目标检测
文章平均质量分 83
swust_fang
people should change
展开
-
mmdetection 将VOC转为COCO格式,并测试coco map。
mmdetection 将VOC转为COCO格式,并测试coco map原创 2023-03-05 09:01:08 · 1130 阅读 · 1 评论 -
VarifocalNet: An IoU-aware Dense Object Detector(2021CVPR)
Motivation之前的目标检测中,在推理阶段使用NMS使用分类分数作为置信度对bbox排序是有问题的,因为分类分数与定位质量没有直接联系。后来基于这个问题,有许多解决办法:1. 比如IOU net 中在回归分支中加了一个预测iou的分数,通过预测iou主导,cls分数作为辅助作为NMS的选取样本的依据。2. iou -aware retina net 的话也是为了解决这个问题,但是他是直接在分类旁边加了一个iou预测分支。分类分数*iou分数作为最终置信度2.Fcos 还原创 2022-04-28 20:02:47 · 1230 阅读 · 0 评论 -
ATSS(CVPR2020)
论文地址:《ATSS》Motivation首先介绍了目标检测的一个发展路线,从RNN到FasterRCNN的two stage 目标检测以及到后来的Yolo,fcos,sdd等one stage的发展路线。因为二阶段的方法是通过在第一阶段筛选了候选框以及正负样本均衡。所以普遍来说二阶段的比一阶段的精度要快,但是速度上了却比不过one stage。在one stage中也分为是否使用anchor的 anchor based 方法以及 anchor free 方法两条路线。举例比较经典的Retina原创 2022-04-22 09:42:28 · 533 阅读 · 0 评论 -
R-FCN: Object Detection via Region-based Fully Convolutional Networks(论文阅读)
论文地址:https://arxiv.org/abs/1912.04260Motivation介绍了先前的网络,介绍了之前基于anchor的回归方式,回归x,y,w,h,但是会遇到一个常见的问题就是物体的大小不一,所以可能导致anchor与gt框之间的偏移太大,所以提出了一种新的回归方式。IDEA提出了一种基于bucket的回归方式,bucket直译为桶,但在这里其实用分段表示更好理解。大概的流程是,backbone ,fpn生成正样本prososals。然后拿到prososals后对这原创 2022-04-19 09:08:34 · 209 阅读 · 0 评论 -
Cascade R-CNN (论文阅读)
论文地址:https://arxiv.org/pdf/1712.00726.pdfMotivation作者探究了一个FastRcnn中RPN中的正负样本划分的IOU阈值,更高的IOU阈值可以带来更优质的proposals,引出了关于iou阈值的讨论。直接增大detection的iou阈值能够直接带来检测定位精度的提升吗?横坐标为输入网络与gt的iou,纵坐标为经过对应iou阈值训练过后的回归器回归过后与gt的iou。灰色直线为参考,在曲线之上的表示回归work了。可以明显的看出:原创 2022-04-16 22:01:51 · 1960 阅读 · 0 评论 -
Side-Aware Boundary Localization for More Precise Object Detection (2020ECCV)
论文地址:https://arxiv.org/abs/1912.04260Motivation介绍了先前的网络,介绍了之前基于anchor的回归方式,回归x,y,w,h,但是会遇到一个常见的问题就是物体的大小不一,所以可能导致anchor与gt框之间的偏移太大,所以提出了一种新的回归方式。IDEA提出了一种基于bucket的回归方式,bucket直译为桶,但在这里其实用分段表示更好理解。大概的流程是,backbone ,fpn生成正样本prososals。然后拿到prososals后对这些中原创 2022-04-14 22:26:56 · 2722 阅读 · 0 评论 -
Corner Proposal Network 论文阅读(2020ECCV)
2020ECCV,目标检测two stage,anchor free,Corner proposal network。原创 2022-03-31 17:27:48 · 2732 阅读 · 0 评论 -
BorderDet(论文解读)
Introduction & problem目前主流的SSD,RetinaNet,FCOS的目标检测主要的pipleline就是在多尺度的特征图上做分类和回归,而这种single-point(直接对特征图点),并不能有足够多的信息去完整表达实例以及实例的边界信息。 之前也有很多work比如说roialign 或者deformable Conv 也是利用了bounding box 里边的其他的信息,但是往往许多是冗余的,不是显式的或者不直接。之前没有工作是显式的直接提取边界的特征信息。自己的理原创 2022-03-28 18:35:09 · 1530 阅读 · 0 评论