POJ 2486 Apple Tree (树形dp)

题意:有一颗苹果树,n个点,n-1条边,每个节点有val[i]个苹果,从根开始走,问最多走k步,能摘得的苹果最大是多少。

分析:树形dp+01背包。

         ① dp[i][j][0]: 对于第i节点,它走j不回来的状态能得到最大苹果。

 ② dp[i][j][1]: 对于第i节点,它走j回来的状态能得到最大苹果。

对于①它可以从u点的其他儿子节点回来后,再走v点不回来,只需多花费1步。

                  dp[u][j][0]=max(dp[u][j][0],dp[u][j-l-1][1]+dp[v][l][0]);
                  
也可在v点回来,在其他儿子节点不回来,需多花费2步
                    dp[u][j][0]=max(dp[u][j][0],dp[u][j-l-2][0]+dp[v][l][1]);

    对于②它只能是每个子树都回来,但需多花费2步。

 dp[u][j][1]=max(dp[u][j][1],dp[u][j-l-2][1]+dp[v][l][1]);

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <string.h>
#include <map>
#include <set>
using namespace std;
#define MAXN 205
#define LL long long
#define INF 0x3f3fffff
struct node
{
    int en,next;
}E[MAXN*2];
int p[MAXN],num,vis[MAXN],n,k,val[MAXN];
int dp[105][MAXN][2];
int max(int x,int y,int z)
{
    return max(max(x,y),z);
}
void init()
{
    memset(p,-1,sizeof(p));
    num=0;
}
void add(int st,int en)
{
    E[num].en=en;
    E[num].next=p[st];
    p[st]=num++;
}
void dfs(int u)
{
    vis[u]=1;
    int i,j,l;
    for(i=p[u];i+1;i=E[i].next)
    {
        int v=E[i].en;
        if(!vis[v])
        {
            dfs(v);
            for(j=k;j>=1;j--)
            {
                for(l=0;l<=j-2;l++)
                {
                    if(j-l-2>=0)
                    dp[u][j][1]=max(dp[u][j][1],dp[u][j-l-2][1]+dp[v][l][1]);
                }
                for(l=0;l<=j-1;l++)
                {
                    if(j-l-1>=0)
                    dp[u][j][0]=max(dp[u][j][0],dp[u][j-l-1][1]+dp[v][l][0]);
                    if(j-l-2>=0)
                    dp[u][j][0]=max(dp[u][j][0],dp[u][j-l-2][0]+dp[v][l][1]);
                }
            }
        }
    }
    for(i=0;i<=k;i++)
    {
        dp[u][i][0]+=val[u];
        dp[u][i][1]+=val[u];
    }
}
int main()
{

    int i;
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        init();

        for(i=1;i<=n;i++)
            scanf("%d",&val[i]);
        for(i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
        }
        memset(vis,0,sizeof(vis));
        memset(dp,0,sizeof(dp));

        dfs(1);
        printf("%d\n",max(dp[1][k][0],dp[1][k][1]));
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值