第一章 电磁模型
1-1引言
学习电磁学,熟练掌握数学工具是:矢量代数、矢量微积分。
1-2电磁模型
归纳法:学科历史发展进程,由观测简单实验开始,推断出一些定律、定理来。
演绎法:对一个理想化模型,假设几个基本关系。从中推导出特殊的定律、定理来。
(本书采用演绎法)
根据理想化模型建立理论,为3个基本步骤:
1、定义基本量。
2、规定数学运算规则。
3、假设一些基本关系。
比如:建立在理想电源和纯电阻、纯电感及纯电容所组成的电路模型之上的:电路理论。
1、定义基本量。//电压V、电流I、电阻R、电感L、电容C。
2、规定数学运算规则。//代数、常微分方程、拉普拉斯变换。
3、假设一些基本关系。//基尔霍夫电压定律、基尔霍夫电流定律。
电磁模型的基本量,大体分为两类:源量和场量。
电磁场影响电荷的重新分布,而电荷的重新分布反过来又影响电磁场:
电磁场 电荷的重新分布
电荷是物质的一种基本特性:。
在建立宏观或大范围的电磁学理论时,发现采用平滑平均密度函数会收到很好的效果。定义三类元情况下的电荷密度,分别是体元v、面元
s、线元
l:
公式解释:
1、电流是电荷对时间的变化率。
2、电流I本身可能与时间有关。
3、电流不是一个点函数,原因:电流必须流过一定的面积(例如一根固定截面的导线)。电流的单位是库仑每秒(C/s),即安培(A)。
电流I与电流密度J的关系,在第五章详细讨论。在这里粗略介绍电流密度J:
在电磁学中,定义一个矢量点函数电流密度J,它表示流过垂直于电流流动方向的单位面积的电流总量。黑体字母是一个矢量,其大小:每单位面积的电流(A/㎡);方向:电流流动的方向。
在电磁学中,有四个矢量场量:
1、定义是:作用在单位试验电荷上的电作用力。
2、是讨论自由空间中静电学(稳定电荷的效应)时需要的唯一矢量。
其在研究媒质中的电场时有用。(第三章)
1、与一定速度运动的电荷所受的磁作用力有关。
2、是讨论自由空间中静磁学(稳定电流的效应)时需要的唯一矢量。(第六章)
其在研究媒质中的磁场时有用。(第六章)
学习电磁学的主要目的:
摘要:在文章开头提到了,用演绎法论述电磁场与电磁波这一学科的方式,包括基本量、规定数学运算规则、基本关系的假设这三类工具,在本1-2节末,带着这三个工具进行目的归纳,如下:
1、根据电磁模型去理解一段距离的电荷之间和电流之间的相互作用。
2、场与波是这电磁模型中的概念性基本量。//场与波:与时间和空间有关。
3、一些基本假设将E、D、B、H和源量联系起来。
由此推出的关系可以用来解释和预测电磁现象。
1-3国际单位制单位和通用常数
基本国际单位
在力学中,三个基本单位,即能表示出所有的量;
在电磁学中,另需要第四个基本单位:电流单位。
电磁学中所有其他单位
首先,电磁学中所有其他单位,都是可以由上文表格中四基本国际单位(m、kg、s、A)表示出来。//
电荷单位,库仑(C)——安培·秒(A·s)
电场强度单位,(V/m)——
磁通密度单位,特斯拉(T)——
通用常数
在电磁模型中,有三个通用常数,它们与自由空间的性质有关。具体如下。
自由空间中电磁波的速度c:
自由空间的电容率ε0:与电现象有关,理解为自由空间中电通密度D与电场强度E的比例常量。即:D=ε0E
自由空间的导磁率μ0:与磁现象有关,理解为自由空间中磁场强度H与磁通密度B的比例常量。
即:
用国际单位表示这三个通用常数的数值,具体如下。
自由空间的导磁率μ0:
三者关系公式:
自由空间的电容率ε0:
注:自由空间指真空条件。
在1-3节末放下以国际单位制单位表示的通用常数的表格。