【动态规划】多重背包问题详解 超详细 总结 dp

什么是多重背包问题?

有n种物品和一个容量是 m m m的背包。第 i i i种物品最多有 s i s_i si件,每件体积是 v i v_i vi,价值是 w i w_i wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大,输出最大价值。

dp问题的通用分析方法

在这里插入图片描述

  • 先考虑用几维状态来表示,背包问题一般用两维表示。【经验】
  • 状态计算是把每个状态一步一步算出来。
  • DP优化一般是指对动态规划的代码或计算方程做一个等价变形。一般是先将最基本的代码写出来再考虑去优化。
  • 这里介绍的DP理解方式是从集合的角度去理解。这里以0-1背包为例子,f(i, j)对应一个集合,是只考虑前i个物品,且背包容量不超过j的所有选法构成的一个集合。(一个选法是指从第1到第i个物品,经过的物品你要么选,你要么不选,这就构成一种选法)
  • f(i, j)一定是集合的某种属性(这种属性一般可以是Max、Min、数量等等)

一、多重背包——朴素版

在这里插入图片描述
在这里插入图片描述
公式推导类似完全背包过程,不熟悉的朋友可以参考我写的完全背包问题

代码——朴素版

#include <iostream>
using namespace std;

const int N = 110;
int f[N][N], v[N], w[N], s[N];
int n, m;
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            for(int k = 0; k <= s[i] && k * v[i] <= j; k++){
                // k == 0时包含了f[i - 1][j]这种情况
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] +  k * w[i]);
                
            }
        }
        
    }
    cout << f[n][m];
    return 0;
}

时间复杂度为O(nms),其中s为每个物品的最大数量,n为物品个数,m为背包最大容量。

那么复杂度过高有什么优化方法呢?

提出问题:是否可以参照完全背包的做法去做优化呢?

在这里插入图片描述
如果按照类似完全背包问题去做,见上图中f[i, j - v[i]]多了一项f[i - 1, j - (s + 1) * v] + s * w,所以没办法直接按完全背包方法做,所以引入二进制优化其中一种做法(当然,还有一种采用单调队列优化的极致做法)。

二、多重背包——二进制优化

优化思路:如果第 i i i件物品总数为s = 1023,那么它有0 ~ 1023种选法,利用二进制的性质,我们可以把物品打包成数量分别为1、2、4、8、…、512的不同种类的物品,通过拼凑的方式可以表示0 ~ 1023种选法,比如:100 = 64 + 32 + 4,那么这样处理后就可以用0-1背包问题模型解决了。

但是这里又有一个问题,如果s = 200,如果打包为1、2、4、8、…、128,表示的数字范围是0 ~ 255,但物品只有200,所以128不能取,取什么呢?取200 - (1 + 2 + … + 64) = 200 - 127 = 73,因为1、2、4、8、…、64可以表示0 ~ 127范围的数字,加上73就能表示73 ~ 200范围的数字,所以证明了最后补上一个73是能够表示73 ~ 200范围数字的,结合0 ~ 127和73 ~ 200,那么1、2、4、8、…、64、73是可以表示0~200内的数字的。

代码——二进制优化

#include <iostream>
using namespace std;

const int N = 11010, M = 2010;
int f[N][M], v[N], w[N];
int n, m;
int cnt = 0;
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        int x, y, z;
        cin >> x >> y >> z;
        int k = 1;
         // 优化思路:如果第i个物品总数s = 1023,那么它有0~1023种选法,
        // 利用二进制的性质,我们可以把物品打包成数量分别为1、2、4、8、...、512的不同种类的物品,
        // 通过拼凑的方式可以表示0~1023种选法,比如:100 = 64 + 32 + 4,
        // 那么这样处理后就可以用0-1背包问题模型解决了。
        
        // 这里又有一个问题,如果s = 200,如果打包为1、2、4、8、...、128,表示的数字范围是0~255,
        // 但物品只有200,所以128不能取,取什么呢?取200 - (1 + 2 + ... + 64) = 200 - 127 = 73,
        // 因为1、2、4、8、...、64可以表示0~127范围的数字,加上73就能表示73~200范围的数字,
        /// 所以证明了最后补上一个73是能够表示73~200范围数字的,结合0~127和73~200,
        // 那么1、2、4、8、...、64、73是可以表示0~200内的数字的。
        while(k <= z){
            cnt++;
            v[cnt] = k * x;
            w[cnt] = k * y;
            z -= k;
            k <<= 1;
        }
        // 处理剩余物品,将其打包为一个新的物品
        if(z){
            cnt++;
            v[cnt] = z * x;
            w[cnt] = z * y;
        }
    }
    n = cnt;// 更新物品真实数量
	
	// 0-1背包代码
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            f[i][j] = f[i - 1][j];
            if(v[i] <= j) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
        
    }
    cout << f[n][m];
    return 0;
}

代码——0-1背包代码优化

具体优化策略请看我写的0-1背包详解

#include <iostream>
using namespace std;

const int N = 11010, M = 2010;
int f[M], v[N], w[N];
int n, m;
int cnt = 0;
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        int x, y, z;
        cin >> x >> y >> z;
        int k = 1;
        while(k <= z){
            cnt++;
            v[cnt] = k * x;
            w[cnt] = k * y;
            z -= k;
            k <<= 1;
        }
        if(z){
            cnt++;
            v[cnt] = z * x;
            w[cnt] = z * y;
        }
    }
    n = cnt; // 更新物品真实数量
    // 优化为一维
    for(int i = 1; i <= n; i++){
        for(int j = m; j >= v[i]; j--){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
        
    }
    cout << f[m];
    return 0;
}

三、多重背包——单调队列优化

在这里插入图片描述
在这里插入图片描述
这里大家需要注意完全背包和多重背包之间的差异,详见我之前写的多重背包详解。
算法思路和重要细节已在上述两个图中得以体现,详细流程见下面代码。

#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010, M = 20010;
int v[N], w[N], s[N]; 
int f[M], g[M], q[M];// 队列q长度应大于等于V
int n, m;
int main(){
    scanf("%d%d", &n, &m);
    
    for(int i = 1; i <= n; i++) scanf("%d%d%d", &v[i], &w[i], &s[i]);
    
    for(int i = 1; i <= n; i++){
        // 拷贝数组
        memcpy(g, f, sizeof f);
        // j可看成是余数r
        for(int j = 0; j < v[i]; j++){
            int hh = 0, tt = -1;
            for(int k = j; k <= m; k += v[i]){
                // 窗口长度大于s + 1,则队头出队
                if(hh <= tt && k - s[i] * v[i] > q[hh]) hh++;
                
                // 单调队列的处理方法,后面必须是严格小于队尾的数
                while(hh <= tt && g[q[tt]] + (k - q[tt]) / v[i] * w[i] <= g[k]) tt--;
                
                // 入队
                q[++tt] = k;
                
                // 比如:f[i, j]和f[i, j - v[i]]差一个w,那么总共差几个w?
                // 差了(k - q[hh]) / v[i] 这么多个。
                f[k] = g[q[hh]] + (k - q[hh]) / v[i] * w[i];
            }
            
        }
        
    }
    printf("%d", f[m]);
    
    return 0;
}
  • 8
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值