二叉树的定义
- 世上树有万千种,唯有二叉课上讲。这里的二叉是二叉树,因为二叉树使用的范围最广,最具有代表意义,因此我们重点讨论二叉树。
- 二叉树( Binary
Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。 - 这个定义显然是递归形式的,自古有“神使用递归,人使用迭代!
二叉树的特点
- 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。(注意:不是都需要两棵子树而是最多可以是两棵,没有子树或者有一棵子树也都是可以的。)
- 左子树和右子树是有顺序的,次序不能颠倒。
二叉树的五种基本形态
-
空二叉树
-
只有一个根结点
-
根结点只有左子树
-
根结点只有右子树
-
根结点既有左子树又有右子树
注意: -
若只从形态上来考虑,拥有三个结点的普通树只有两种情况:两层或者三层。
但对于很二的二叉树来说,由于要区分左右,所以就演变成五种形态。
特殊二又树
满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树。 (No pic you say a J8)
- 满二叉树的特点有:
1 叶子只能出现在最下一层。
2 非叶子结点的度一定是2。
3 在同样深度的二又树中,满二又树的结点个数一定最多,同时叶子也是最多。
完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1<=i<=n)的结点与同样深度的满二叉树中编号为i的结点位置完全相同,则这棵二叉树称为完全二叉树。
-
完全二叉树的特点有:
1 叶子结点只能出现在最下两层。
2 最下层的叶子一定集中在左部连续位置。
3 倒数第二层,若有叶子结点,一定都在右部连续位置
4 如果结点度为1,则该结点只有左孩子。
5 同样结点树的二叉树,完全二叉树的深度最小。 -
注意:满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树。
二叉树的性质
- 二叉树的性质一:在二叉树的第i层上至多有 2^(i-1)个结点(i>=1)。
- 二叉树的性质二:深度为k的二叉树至多有2^k-1个结点(k>=1)。
- 二叉树的性质三:对任何一棵二叉树T如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
——推导:
1 首先我们再假设度为1的结点数为n1,则二叉树T的结点总数n=n0+n1+n2
2 其次我们发现连接数总是等于n-1,并且等于n1+2n2
3 所以n-1=n1+2n2
4 所以n0+n1+n2-1=n1+n2+n2
5 最后n0=n2+1 - 二叉树的性质四:具有n个结点的完全二叉树的深度为
k=⌊log2n⌋+1。
二叉树的存储结构
二叉树是一种特殊的树,用顺序存储结构或链式存储结构都能够简单实现。
二叉树的顺序存储结构就是用一维数组存储二叉树中的各个结点,并且结点的存储位置能体现结点之间的逻辑关糸。
二叉链表
二叉树的存储按照国际惯例来说一般也是采用链式存储结构的。
二叉树每个结点最多有两个孩子,所以为它设计个数据域和两个指针域是比较自然的想法,我们称这样的链表叫做二叉链表。
二叉树的结构:
二叉树的遍历方法
二叉树的遍历方式可以很多,如果我们限制了从左到右的习惯方式,那么主要就分为一下四种:前序遍历、中序遍历、后序遍历、层序遍历。
- 前序遍历:ABDHIEJCFKG
- 中序遍历:HDIBEJAFKCG
- 后序遍历:HIDJEBKFGCA
- 层序遍历:ABCDEFJHIJK