3 OpenCV 车牌识别-2 颜色定位

该博客介绍了如何利用OpenCV的HSV颜色模型来识别图像中的蓝色部分,特别是针对车牌识别。通过调整HSV的色调、饱和度和亮度阈值,可以定位到蓝色像素。在预处理步骤中,将BGR图像转换为HSV,并进行二值化处理。对于蓝色和黄色车牌,由于颜色特性不同,可能需要不同的二值化策略。文章通过比较Sobel和颜色二值化后的效果,指出颜色二值化处理在车牌识别中的优势。
摘要由CSDN通过智能技术生成

HSV颜色模型

如果我们想找出一副图像中的蓝色部分,我们需要检查rgb分量中的blue分量就可以了。一般blue分量是0-255的值,即便蓝色分量255了,由于另外两个分量的影响,需要考虑各个分量的配比问题,rgb作为颜色判断很难实现,就有了hsv模型hsv,photoshop中hsb

HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。这个模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)。

在这里插入图片描述

色调H

用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;

饱和度S

饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高。饱和度高,颜色则深而艳。光谱色的白光成分为0,饱和度达到最高。通常取值范围为0%~100%,值越大,颜色越饱和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值