数字信号处理

因果性:

 

信号(离散)

x(t)

模 len: E=\int_{-\infty}^{+\infty}{x(t)}^{2}dt

功率 :P=\lim_{T\rightarrow +\infty}\frac{E}{2T}

 

信号(连续)

x[n]

模: E=\sum_{n=-\infty}^{+\infty}x[n]^2

功率: P=\lim_{N\rightarrow +\infty}\frac{E}{2N+1}

 

信号操作

尺度变换:

  • 位移
  • 幅度放缩
  • 时域放缩

 

 

信号属性

奇偶信号分量(由正负x(t), x(-t)组合)

X_{EV}(even)X_{OD}(odd)

 

常见信号实例

实指数信号

x(t)=Ce^{at}

  

复指数信号

x(t)=e^{j{\omega}_0t}

  

正弦信号

x(t)=Acos({\omega}_0t+\varphi )

 

常见信号

单位阶跃与单位冲击: \delta , u, u[0]=1

相互关系:

#############################

复指数信号(连续), 离散复指数信号同理

周期性: 以T为周期   (离散复指数信号不一定周期)

基波频率: T0

###############

操作

欧拉公式: e^{j\omega _0t}=cos(\omega_0t)+jsin(\omega_0t)

 

#######################################################

系统

系统级联: 串联

性质及检验方法

  • 记忆性:
  • 可逆性
  • 因果性
  • 稳定性: x(t)有界, 则y(t)有界
  • 时不变: 
  • 线性
    • 增量线性: 对应增长变化线性

 

 

线性时不变系统

信号可叠加/ 系统无状态

 

数学变换部分: 信号与系统 / 积分变换

 

卷积性质

卷积和

\\y[n]=x[n]*h[n]\\ y[n]=\sum_{k=-\infty}^{+\infty}x[k]h[n-k]

卷积积分

y[t]=\int_{-\infty}^{+\infty}x(\tau )\delta(t-\tau)d\tau

交换律

分配律

结合律

微分

积分

卷积定理

\\F^{-1}[F1.F2]=f_1*f_2\\ F[f1.f2]=\frac{1}{2\pi}F_1*F_2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值