这个问题我之前是有过疑问的,后来不知道啥原因又打消了这个疑问。今天又去看了一下github上的那篇文章:
DeepLearning-500-questions/ch05_卷积神经网络(CNN)/第五章_卷积神经网络
里面有这么一段:
卷积的时候需要对卷积核进行180的旋转!
这个和平时想的有点不一样啊,平时看到的文章不都是那卷积核直接和图像做卷积的吗?
网上搜到的卷积操作绝大部分是这样介绍的,拿着卷积核直接和原图进行卷积计算就行了。
也问了周围的小伙伴,好像理解的和我差不多,觉得不用旋转180度啊,这里写的有点多余吧。
实际不是这么回事!事实证明我真是个菜鸟【捂脸】!
上面这张图的卷积核已经是原卷积核逆时针旋转180度以后的样子了,也就是说原卷积核应该是[[1, 0, -1], [1, 0, -1], [1, 0, -1]]。
标准卷积操作就要先将卷积核逆时针旋转180度,再做乘积求和,没有旋转只有乘积求和就不叫卷积运算。
具体看看下面这篇文章,里面解释的比较清楚,我就不重复了。mark一下