题目:给定一个正整数n,求表达式 : 的值.
分析:分两种情况讨论。
0. 3k+7为素数时,那么由威尔逊定理知道 ,即
此时有,,所以
1. 3k+7为合数时,那么3k+7可以写成: 那么很明显a和b在(3k+6)!中都会出现
所以,此时:
所以,综上,问题就是小于等于n的数i中,存在多少个i,使得3i+7是素数。
转:https://blog.csdn.net/acdreamers/article/details/12711223
在说明一下: 3k+7为素数的时候 原式=[ m-[m-1] ] (少一个倍数,这时候分母不可拆,还有就是为合数的时候 可以拆分母,得出为 0
引申无关性质:[m-1]=[m]-1
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define X 10005
#define inf 0x3f3f3f3f
#define one 0x01
#define PI 3.141592653589793238462643383
const int N=5*1e6+5;
int mod=2009;
int a[N]={0},f[N]={0};
void P()
{
for(int i=2;i<sqrt(N);++i)
{
if(!a[i])
{
for(int j=i*i;j<N;j+=i)
a[j]=1;
}
}
}
void init()
{
f[1]=0;
for(int k=2;k<=1e6;++k) ///k不能到N
{
if(!a[3*k+7])//注意数组a[]太小会溢出
f[k]=f[k-1]+1;
else
f[k]=f[k-1];
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int n,t;
P();
init();
cin>>t;
while(t--)
{
cin>>n;
cout<<f[n]<<endl;
}
return 0;
}