高等数学学习笔记DAY13

极限运算法则

定理6(符合函数极限运算法则)

设函数 f [ g ( x ) ] f[g(x)] f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) y = f ( u ) y=f(u) y=f(u) 复合而成, f [ g ( x ) ] f[g(x)] f[g(x)] 在点 x 0 x_0 x0 的某去心邻域内有定义,若 l i m x → x 0 g ( x ) = u 0 lim_{x\to x_0}g(x)=u_0 limxx0g(x)=u0, lim ⁡ u → u 0 f ( u ) = A \lim_{u\to u_0}f(u)=A limuu0f(u)=A ,且存在 δ 0 > 0 \delta_0>0 δ0>0,当 x ∈ U ˚ ( x 0 , δ 0 ) x\in\mathring{U}(x_0,\delta_0) xU˚(x0,δ0) 时,有 f ( x ) ≠ u 0 ) f(x)\not=u_0) f(x)=u0) l i m x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A lim_{x\to x_0}f[g(x)]=\lim_{u\to u_0}f(u)=A limxx0f[g(x)]=uu0limf(u)=A.

证:按函数极限的定义,要证: ∀ ε > 0 \forall\varepsilon>0 ε>0, ∃   δ > 0 \exists\ \delta>0  δ>0 使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ ∣ f [ g ( x ) ] − A ∣ < ε |f[g(x)]-A|<\varepsilon f[g(x)]A<ε成立.

由于 lim ⁡ u → u 0 f ( u ) = A \lim_{u\to u_0}f(u)=A limuu0f(u)=A, ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃   η > 0 \exists\ \eta>0  η>0,当 0 < ∣ u − u 0 ∣ < η 0<|u-u_0|<\eta 0<uu0<η 时, ∣ f ( u ) − A ∣ < ε |f(u)-A|<\varepsilon f(u)A<ε 成立.

又由于 lim ⁡ x → x 0 g ( x ) = u 0 \lim_{x\to x_0}g(x)=u_0 limxx0g(x)=u0,对于上式得到的 η > 0 \eta>0 η>0, ∃   δ 1 > 0 \exists\ \delta_1>0  δ1>0,当 0 < ∣ x − x 0 ] ∣ < δ 1 0<|x-x_0]|<\delta_1 0<xx0]<δ1 时, ∣ g ( x ) − u 0 ∣ < η |g(x)-u_0|<\eta g(x)u0<η 成立.

由假设,当 x ∈ U ˚ ( x 0 , δ 0 ) x\in\mathring{U}(x_0,\delta_0) xU˚(x0,δ0) 时, g ( x ) ≠ u 0 g(x)\not=u_0 g(x)=u0.取 δ = min ⁡ { δ 0 , δ 1 } \delta=\min\{\delta_0,\delta_1\} δ=min{δ0,δ1},则当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时, ∣ g ( x ) − u 0 ∣ < η |g(x)-u_0|<\eta g(x)u0<η ∣ g ( x ) − u 0 ∣ ≠ 0 |g(x)-u_0|\not=0 g(x)u0=0 同时成立,即 0 < ∣ g ( x ) − u 0 ∣ < η 0<|g(x)-u_0|<\eta 0<g(x)u0<η 成立,从而 ∣ f [ g ( x ) ] − A ∣ = ∣ f ( u ) − A ∣ < ε |f[g(x)]-A|=|f(u)-A|<\varepsilon f[g(x)]A=f(u)A<ε成立.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值