今天开始学高等数学下,每天做下总结,并顺便练习下写markdown
数量积
- a⋅b=∣a∣∣b∣cosθ=∣a∣Prjaba \cdot b = |a| |b| cos \theta = |a| Prj_aba⋅b=∣a∣∣b∣cosθ=∣a∣Prjab
Prjab为向量b在向量a方向的投影
-
a ⋅\cdot⋅ b = 0 是 a ⊥ b 的充要条件
-
数量积满足交换律、结合律和分配率
-
由数量积推导的两向量夹角余弦坐标表示式:
cosθ=axbx+ayby +azbzax2+ay2+az2bx2+by2+bz2cos \theta = \frac{a_xb_x + a_yb_y~ + a_zb_z} {\sqrt{a_x^2 + a_y^2 + a_z^2}\sqrt{b_x^2 + b_y^2 + b_z^2}}cosθ=ax2+ay2+az2bx2+by2+bz2axbx+ayby +azbz
向量积
- c=a×bc = a \times bc=a×b
c为垂直于向量a和向量b所构成平面的向量,利用行列式计算
-
a ×\times× b = 0 是 a ∥ b 的充要条件
-
向量积满足交换律、结合律和分配率
平面方程
法线向量 n = ( A , B , C ) ;平面上一已知点 M0( x0 , y0 ,z0 ) ;平面上任意一点 M( x , y , z )
- 一般式:Ax + By + Cz + D = 0
- 当D = 0 时,平面通过原点
- 当A/B/C = 0 时,法线向量垂直于x/y/z轴,平面平行(或包含)x/y/z轴
-
点法式:A ( x - x0 ) + B ( y - y0 ) + C ( z - z0 ) = 0
-
截距式:xa+yb+zc=1\frac xa + \frac yb + \frac zc = 1ax+by+cz=1
a、b、c分别为平面于x、y、z轴焦点到原点的距离(截距)
- 两平面夹角公式:
cosθ=∣A1A2+B1B2+C1C2∣A12+B12+C12A22+B22+C22cos \theta = \frac{|A_1A_2 + B_1B_2 + C_1C_2|} {\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}cosθ=A12+B12+C12A22+B22+C22