高等数学下册学习笔记(一)

这篇博客详细记录了高等数学下册的学习笔记,涵盖了数量积、向量积、平面方程、空间直线、曲面及曲线等核心概念。通过公式解析了向量的投影、夹角、平面方程的多种形式、空间直线的表示以及曲面方程,还涉及两向量、两平面、两直线的夹角计算和点到平面的距离公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天开始学高等数学下,每天做下总结,并顺便练习下写markdown

数量积

  • a⋅b=∣a∣∣b∣cosθ=∣a∣Prjaba \cdot b = |a| |b| cos \theta = |a| Prj_abab=abcosθ=aPrjab

Prjab为向量b在向量a方向的投影

  • a ⋅\cdot b = 0 是 a ⊥ b 的充要条件

  • 数量积满足交换律、结合律和分配率

  • 由数量积推导的两向量夹角余弦坐标表示式:
    cosθ=axbx+ayby +azbzax2+ay2+az2bx2+by2+bz2cos \theta = \frac{a_xb_x + a_yb_y~ + a_zb_z} {\sqrt{a_x^2 + a_y^2 + a_z^2}\sqrt{b_x^2 + b_y^2 + b_z^2}}cosθ=ax2+ay2+az2 bx2+by2+bz2 axbx+ayby +azbz

向量积

  • c=a×bc = a \times bc=a×b

c为垂直于向量a和向量b所构成平面的向量,利用行列式计算

  • a ×\times× b = 0 是 a ∥ b 的充要条件

  • 向量积满足交换律、结合律和分配率

平面方程

法线向量 n = ( A , B , C ) ;平面上一已知点 M0( x0 , y0 ,z0 ) ;平面上任意一点 M( x , y , z )

  • 一般式:Ax + By + Cz + D = 0
  • 当D = 0 时,平面通过原点
  • 当A/B/C = 0 时,法线向量垂直于x/y/z轴,平面平行(或包含)x/y/z轴
  • 点法式:A ( x - x0 ) + B ( y - y0 ) + C ( z - z0 ) = 0

  • 截距式:xa+yb+zc=1\frac xa + \frac yb + \frac zc = 1ax+by+cz=1

a、b、c分别为平面于x、y、z轴焦点到原点的距离(截距)

  • 两平面夹角公式:
    cosθ=∣A1A2+B1B2+C1C2∣A12+B12+C12A22+B22+C22cos \theta = \frac{|A_1A_2 + B_1B_2 + C_1C_2|} {\sqrt{A_1^2 + B_1^2 + C_1^2}\sqrt{A_2^2 + B_2^2 + C_2^2}}cosθ=A12+B12+C12 A22+B22+C22
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值