高等数学学习笔记 DAY19

函数的连续性与间断点

函数的连续性

定义

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 , \lim_{\Delta x\to0}\Delta y=\lim_{\Delta x\to 0}[f(x_0+\Delta x)-f(x_0)]=0, Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0,那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续.

为了应用方便起见,下面把函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续的定义用不同的方式来叙述.

x = x 0 + Δ x x=x_0+\Delta x x=x0+Δx,则 Δ x → 0 \Delta x\to 0 Δx0 就是 x → x 0 x\to x_0 xx0.又由于 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = f ( x ) − f ( x 0 ) , \Delta y=f(x_0+\Delta x)-f(x_0)=f(x)-f(x_0), Δy=f(x0+Δx)f(x0)=f(x)f(x0), f ( x ) = f ( x 0 ) + Δ y , f(x)=f(x_0)+\Delta y, f(x)=f(x0)+Δy,可见 Δ y → 0 \Delta y\to0 Δy0 就是 f ( x ) → f ( x 0 ) f(x)\to f(x_0) f(x)f(x0),因此 lim ⁡ Δ x → 0 Δ y \lim_{\Delta x\to0}\Delta y Δx0limΔy lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)相当.所以函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续的定义又可叙述如下:

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , \lim_{x\to x_0}f(x)=f(x_0), xx0limf(x)=f(x0),那么就称函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 连续.

由函数 f ( x ) f(x) f(x) x → x 0 x\to x_0 xx0 时的极限的定义可知,上述定义也可以用" ε − δ \varepsilon-\delta εδ"语言表达:

f ( x ) f(x) f(x) 在点 x 0 x_0 x0 连续 ⇔ ∀ ε > 0 \Leftrightarrow\forall\varepsilon>0 ε>0, ∃   δ > 0 \exists\ \delta>0  δ>0,当 ∣ x − x 0 ∣ < δ |x-x_0|<\delta xx0<δ 时,有 ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε.

下面引出左连续和右连续的概念.

如果 lim ⁡ x → x 0 − f ( x ) = f ( x 0 − ) \lim_{x\to x_0^-}f(x)=f(x_0^-) limxx0f(x)=f(x0) 存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 − ) = f ( x 0 ) , f(x_0^-)=f(x_0), f(x0)=f(x0),那么就说函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 左连续.

如果 lim ⁡ x → x 0 + f ( x ) = f ( x 0 + ) \lim_{x\to x_0^+}f(x)=f(x_0^+) limxx0+f(x)=f(x0+) 存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 + ) = f ( x 0 ) , f(x_0^+)=f(x_0), f(x0+)=f(x0),那么就说函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 右连续.

在区间上没一点都是连续的函数叫做在该区间上的连续函数,或者说函数在该区间上连续.如果区间包含端点,那么函数在右端点连续是指左连续,在左端点连续是指右连续.

连续函数的图形是一条连续而不间断的曲线.

曾经证明过:如果 f ( x ) f(x) f(x) 是有理整函数(多项式),那么对于任意实数 x 0 x_0 x0,都有 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\to x_0}f(x)=f(x_0) limxx0f(x)=f(x0),因此有理整函数在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 内是连续的.对于有理分式函数 F ( x ) = P ( x ) Q ( x ) F(x)=\frac{P(x)}{Q(x)} F(x)=Q(x)P(x),只要 Q ( x ) ≠ 0 Q(x)\not=0 Q(x)=0,就有 lim ⁡ x → x 0 F ( x ) = F ( x 0 ) \lim_{x\to x_0}F(x)=F(x_0) limxx0F(x)=F(x0),因此有理分式函数在其定义域内的每个点都是连续的.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值