数列的极限
收敛数列的性质
定义1(极限的唯一性)
如果数列 { x n } \{x_n\} {xn} 收敛,那么它的极限唯一.
证:用反证法,假设数列 { x n } \{x_n\} {xn} 同时有 x n → a x_n\to a xn→a 和 x n → b x_n\to b xn→b,且 a < b a<b a<b.取 ε = b − a 2 \varepsilon=\frac{b-a}{2} ε=2b−a.
因为 lim n → ∞ x n = a \lim_{n\to\infty} x_n=a limn→∞xn=a,所以 ∃ \exists ∃ 正整数 N 1 N_1 N1,当 n > N 1 n>N_1 n>N1 时,不等式 ∣ x n − a ∣ < b − a 2 |x_n-a|<\frac{b-a}{2} ∣xn−a∣<2b−a都成立.
同理,因为 lim n → ∞ x n = b \lim_{n\to\infty} x_n=b limn→∞xn=b,所以 ∃ \exists ∃ 正整数 N 2 N_2 N2,当 n > N 2 n>N_2 n>N2 时,不等式 ∣ x n − b ∣ < b − a 2 |x_n-b|<\frac{b-a}{2} ∣xn−b∣<2b−a都成立.
取 N = max { N 1 , N 2 } N=\max\{N_1,N_2\} N=max{N1,N2},则当 n > N n>N n>N 时上面两式同时成立,但是从两式中可以得到 x n < b − a 2 x_n<\frac{b-a}{2} xn<2b−a 和 x n > b − a 2 x_n>\frac{b-a}{2} xn>2b−a(这里可能比较玄学,请自行理解一下),这是不可能的,所以就证明了本定义.
定理2(收敛数列的有界性)
如果数列 { x n } \{x_n\} {xn} 收敛,那么数列 { x n } \{x_n\} {xn} 一定有界.
证:因为数列 { x n } \{x_n\} {xn} 收敛,设 lim n → ∞ x n = a \lim_{n\to \infty}x_n=a limn→∞xn=a,根据数列的极限的定义,对于 ε = 1 \varepsilon=1 ε=1, ∃ \exists ∃ 正整数 N N N,当 n > N n>N n>N 时,不等式 ∣ x n − a ∣ < 1 |x_n-a|<1 ∣xn−a∣<1都成立.于是,当 n > N n>N n>N 时, ∣ x n ∣ = ∣ ( x n − a ) + a ∣ ≤ ∣ x n − a ∣ + ∣ a ∣ < 1 + ∣ a ∣ . |x_n|=|(x_n-a)+a|\leq |x_n-a|+|a|<1+|a|. ∣xn∣=∣(xn−a)+a∣≤∣xn−a∣+∣a∣<1+∣a∣.取 M = max { ∣ x 1 ∣ , ∣ x 2 ∣ , ⋯ , ∣ x N ∣ , 1 + ∣ a ∣ } M=\max\{|x_1|,|x_2|,\cdots,|x_N|,1+|a|\} M=max{∣x1∣,∣x2∣,⋯,∣xN∣,1+∣a∣},那么数列 { x n } \{x_n\} {xn} 中的一切 x n x_n xn 都满足不等式 ∣ x n ∣ ≤ M . |x_n|\leq M. ∣xn∣≤M.就证明了 { x n } \{x_n\} {xn} 是有界的.
但是要注意,如果一个数列是有界的,它未必就一定是收敛的.
定理3(收敛数列的保号性)
如果 lim n → ∞ = a \lim_{n\to \infty}=a limn→∞=a,且 a > 0 a>0 a>0(或 a < 0 a<0 a<0),那么存在正整数 N N N,当 n > N n>N n>N 时,都有 x n > 0 x_n>0 xn>0(或 x n < 0 x_n<0 xn<0).
证:就 a > 0 a>0 a>0 的情形证明.由数列的极限的定义,对 ε = a 2 > 0 \varepsilon=\frac{a}{2}>0 ε=2a>0, ∃ \exists ∃ 正整数 N N N,当 n > N n>N n>N 时,有 ∣ x n − a ∣ < a 2 , |x_n-a|<\frac{a}{2}, ∣xn−a∣<2a,从而 x n > a − a 2 = a 2 > 0. x_n>a-\frac{a}{2}=\frac{a}{2}>0. xn>a−2a=2a>0.
推论:如果数列 { x n } \{x_n\} {xn} 从某项起有 x n ≥ 0 x_n\geq 0 xn≥0(或 x n ≤ 0 x_n\leq 0 xn≤0),且 lim n → ∞ x n = a \lim_{n\to\infty}x_n=a limn→∞xn=a,那么 a ≥ 0 a\geq 0 a≥0(或 a ≤ 0 a\leq 0 a≤0).
具体证明略,可以看看这里.
定理4(收敛数列与其子数列的关系)
如果数列 { x n } \{x_n\} {xn} 收敛于 a a a,那么它的任一子数列也收敛,且极限也是 a a a.
证:设数列 { x n k } \{x_{n_k}\} {xnk} 是数列 { x n } \{x_n\} {xn} 的任一子数列.
由于 lim n → ∞ \lim_{n\to\infty} limn→∞,故 ∀ ε > 0 \forall \varepsilon>0 ∀ε>0, ∃ \exists ∃ 正整数 N N N,当 n > N n>N n>N 时, ∣ x n − a ∣ < ε |x_n-a|<\varepsilon ∣xn−a∣<ε 成立.
取 K = N K=N K=N,则 k > K k>K k>K 时 n k > n K ≥ N n_k>n_K\geq N nk>nK≥N.于是 ∣ x n k − a ∣ < ε |x_{n_k}-a|<\varepsilon ∣xnk−a∣<ε.这就证明了 lim n → ∞ x n k = a \lim_{n\to\infty}x_{n_k}=a limn→∞xnk=a.
由定理4可知,如果数列 { x n } \{x_n\} {xn} 有两个子数列收敛于不同的极限,那么数列 { x n } \{x_n\} {xn} 是发散的.