在计算机内,整数的长度是确定的,在字长为32位的计算机中,整数的长度就是32个二进制,这其中还包括了符号位(1表示正,0表示负)。这里为了方便描述,就假设机器字长为8位
例如:十进制整数23,二进制真值表示为10111
,其原码表示为0001 0111
;十进制整数-23,二进制真值表示为-10111
,原码表示为1001 0111
;简而言之,源码就是最高位为符号位,其他位表示该数的绝对值
如果计算机内部采用原码表示数,那么在进行加法和减法运算的时候,最终都转化为两个绝对值的加运算和减运算,因此,在设计计算器的时候就既需要设计加法运算器,又要设计减法运算器(代价有点大,是否可以就用一种类型的运算器呢? 其实大多数人都喜欢做加法运算,不太喜欢用减法运算)
1,补码的思想
我们希望只设计加法运算器,不用减法运算器,我们希望找到一种方案,采用这种方案做加运算 1 + ( -1 ) ,两个数可以直接根据二进制的加法规则做运算,得到0,而不必做减法
用0000 0000
表示0是很自然的想法,用0000 0001
到0111 1111
表示1到127的正数,也是自然的想法,此时,最高位的0可以做符号标识,也可以看成普通的二进制位
2,怎么表示-1?
我们做一次逆向思维,0000 0001
加上什么样的二进制数可以得到0000 0000
?即:从右向左思考,加数的最右边的最低位必须是1,根据二进制加法规则:1+1=0,进位为1。再考虑次低位,加数的次低位也必须是1,然后加上1得0进一位,…依次类推,加数的8为都必须是1,才可以得到8个0。问题是最后产生一个进位,即:0000 0001 + (1111 1111)= 1 0000 0000
这在数学上是不可接受的,但是在计算机中去刚好合适,因为在设计中,每个数的长度是确定的,所以无论结果最后是多少,都只保留8位,多余的位会被丢弃。因此,我们可以将1111 1111
来表示-1,下面就是采用一种方式来合理的将-1怎么变成1111 1111
这种形式
3,补码的定义
带符号整数有原码、反码、补码等几种编码方式(如果是无符号整数,就没有符号位,它表示的数字最大值比有符号整数大)。原码即直接将真值转换为其相应的二进制形式,而反码和补码是对原码进行某种转换编码方式。正整数的原码、反码和补码都一样,负数的反码是对原码的除符号位外的其他位进行取反后的结果(取反即如果该位为0则变为1,而该位为1则变为0操作)。而补码是先求原码的反码,然后在反码的末尾位加1后得到结果,即补码是反码+1
补码就是最方便的方式。它的便利体现在,所有的加法运算可以使用同一种电路完成
以-8作为例子。假定有2种表示方法。一种是直觉表示法,即10001000(1表示负数,后面的8表示数值)
;另一种是2的补码表示法,即11111000(最左侧的1表示这是一个负数,后面部分的补码是0001000,大小刚好是8)
。请问哪一种表示法在加法运算中更方便?
随便写个计算式:16 + (-8) = ?(16的二进制表示是00010000
)
(1)用直觉表示法,加法就要写成:
0001 0000
+ 1000 1000
--------------
1001 1000
可以看到,如果按照正常的加法规则,就会得到10011000
的结果,转成十进制就是-24。显然,这是错误的答案。也就是说,在这种情况下,正常的加法规则不适用于正数与负数的加法,因此必须制定两套运算规则,一套用于正数加正数,还有一套用于正数加负数。从电路上说,就是必须为加法运算做两种电路
(2)用补码表示法,则写成:
0 0 0 1 0 0 0 0
+ 1 1 1 1 1 0 0 0
-----------------
1 0 0 0 0 1 0 0 0
- 可以看到,按照正常的加法规则,得到的结果是
100001000
。注意,这是一个9位的二进制数。我们已经假定这是一台8位机,因此最高的第9位是一个溢出位,会被自动舍去。所以,结果就变成了00001000
,转成十进制正好是8,也就是16 + (-8) 的正确答案。这说明了,2的补码表示法可以将加法运算规则,扩展到整个整数集,从而用一套电路就可以实现全部整数的加法。
补码的本质
要将正数转成对应的负数,其实只要用0减去这个数就可以了。比如,-8其实就是0-8
已知8的二进制是00001000
,-8就可以用下面的式子求出:
0 0 0 0 0 0 0 0
- 0 0 0 0 1 0 0 0
-----------------
因为00000000
(被减数)小于0000100
(减数),所以不够减。请回忆一下小学算术,如果被减数的某一位小于减数,我们怎么办?很简单,问上一位借1就可以了。所以,0000000
也问上一位借了1,也就是说,被减数其实是100000000
,算式也就改写成:
1 0 0 0 0 0 0 0 0
- 0 0 0 0 1 0 0 0
-----------------
1 1 1 1 1 0 0 0
进一步观察,可以发现100000000 = 11111111 + 1
,所以上面的式子可以拆成两个:
1 1 1 1 1 1 1 1
- 0 0 0 0 1 0 0 0
-----------------
1 1 1 1 0 1 1 1
+ 0 0 0 0 0 0 0 1
-----------------
1 1 1 1 1 0 0 0
- 补码的两个转换步骤就是这么来的(其中的
1111 1000
就是-8的补码,是由对000 1000
取反得到111 0111
加1 最终得到111 1000
,最后加上符号位1就是1111 1000
)。这就是补码计算规则