ElasticSearch-3

Kibana

Kibana 是一个免费且开放的用户界面,能够让你对 Elasticsearch 数据进行可视化,并让你在 Elastic Stack 中进行导航。你可以进行各种操作,从跟踪查询负载,到理解请求如何流经你的整个应用,都能轻松完成

修改 config/kibana.yml 文件

# 默认端口

server.port: 5601

# ES 服务器的地址

elasticsearch.hosts: ["http://localhost:9200"]

# 索引名

kibana.index: ".kibana"

# 支持中文

i18n.locale: "zh-CN"

Windows 环境下执行 bin/kibana.bat 文件

通过浏览器访问 : http://localhost:5601

ElasticSearch集成

1.Spark Streaming 框架集成

<!-- elasticsearch 的客户端 -->

<dependency>

<groupId>org.elasticsearch.client</groupId>

<artifactId>elasticsearch-rest-high-level-client</artifactId>

<version>7.8.0</version>

</dependency>

<!-- elasticsearch 依赖 2.x 的 log4j -->

<dependency>

<groupId>org.apache.logging.log4j</groupId>

<artifactId>log4j-api</artifactId>

<version>2.8.2</version>

</dependency>

<dependency>

<groupId>org.apache.logging.log4j</groupId>

<artifactId>log4j-core</artifactId>

<version>2.8.2</version>

</dependency>

<!--    <dependency>-->

<!--       <groupId>com.fasterxml.jackson.core</groupId>-->

<!--       <artifactId>jackson-databind</artifactId>-->

<!--       <version>2.11.1</version>-->

<!--    </dependency>-->

<!--    &lt;!&ndash; junit 单元测试 &ndash;&gt;-->

<!--    <dependency>-->

<!--       <groupId>junit</groupId>-->

<!--       <artifactId>junit</artifactId>-->

<!--       <version>4.12</version>-->

<!--    </dependency>-->

</dependencies>

</project>

Flink框架集成

数据精准一次性处理(Exactly-Once)

乱序数据,迟到数据

低延迟,高吞吐,准确性

容错性

Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。

 <?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.atguigu.es</groupId>

<artifactId>flink-elasticsearch</artifactId>

<version>1.0</version>

<properties>

<maven.compiler.source>8</maven.compiler.source>

<maven.compiler.target>8</maven.compiler.target>

</properties>

<dependencies>

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-scala_2.12</artifactId>

<version>1.12.0</version>

</dependency>

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-streaming-scala_2.12</artifactId>

<version>1.12.0</version>

</dependency>

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-clients_2.12</artifactId>

<version>1.12.0</version>

</dependency>

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-connector-elasticsearch7_2.11</artifactId>

<version>1.12.0</version>

</dependency>

<!-- jackson -->

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-core</artifactId>

<version>2.11.1</version>

</dependency>

</dependencies>

</project>

 

package com.atguigu.es;

import org.apache.flink.api.common.functions.RuntimeContext;

import org.apache.flink.streaming.api.datastream.DataStreamSource;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunctio n;

import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;

import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink;

import org.apache.http.HttpHost;

import org.elasticsearch.action.index.IndexRequest;

import org.elasticsearch.client.Requests;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List; import java.util.Map;

public class FlinkElasticsearchSinkTest {

public static void main(String[] args) throws Exception {

StreamExecutionEnvironment                         env                     = StreamExecutionEnvironment.getExecutionEnvironment();

DataStreamSource<String>        source  =   env.socketTextStream("localhost",

9999);

List<HttpHost> httpHosts = new ArrayList<>(); httpHosts.add(new HttpHost("127.0.0.1", 9200, "http"));

//httpHosts.add(new HttpHost("10.2.3.1", 9200, "http"));

// use a ElasticsearchSink.Builder to create an ElasticsearchSink ElasticsearchSink.Builder<String>        esSinkBuilder       =       new

ElasticsearchSink.Builder<>(

httpHosts,

new ElasticsearchSinkFunction<String>() {

public IndexRequest createIndexRequest(String element) { Map<String, String> json = new HashMap<>(); json.put("data", element);

return Requests.indexRequest().index("my-index")//.type("my-type").source(json);

}

@Override

public                void  process(String   element,  RuntimeContext   ctx, RequestIndexer indexer) {

        indexer.add(createIndexRequest(element));}

}

);

// configuration for the bulk requests; this instructs the sink to emit after every element, otherwise they would be buffered

esSinkBuilder.setBulkFlushMaxActions(1);

// provide a RestClientFactory for custom configuration on the internally created REST client

//   esSinkBuilder.setRestClientFactory(

//          restClientBuilder -> {

//              restClientBuilder.setDefaultHeaders(...)

//              restClientBuilder.setMaxRetryTimeoutMillis(...)

//              restClientBuilder.setPathPrefix(...)

//              restClientBuilder.setHttpClientConfigCallback(...)

//          }

//   );

source.addSink(esSinkBuilder.build()); env.execute("flink-es");

}

}

Elasticsearch 优化

Elasticsearch 的基础是 Lucene,所有的索引和文档数据是存储在本地的磁盘中,具体的路径可在 ES 的配置文件../config/elasticsearch.yml 中配置,如下

磁盘在现代服务器上通常都是瓶颈。Elasticsearch 重度使用磁盘,你的磁盘能处理的吞吐量越大,你的节点就越稳定。这里有一些优化磁盘 I/O 的技巧

使用 SSD。就像其他地方提过的, 他们比机械磁盘优秀多了。

使用 RAID 0。条带化 RAID 会提高磁盘 I/O,代价显然就是当一块硬盘故障时整个就故障了。不要使用镜像或者奇偶校验 RAID 因为副本已经提供了这个功能。

另外,使用多块硬盘,并允许 Elasticsearch 通过多个 path.data 目录配置把数据条带化分配到它们上面。

不要使用远程挂载的存储,比如 NFS 或者 SMB/CIFS。这个引入的延迟对性能来说完全是背道而驰的。

分片策略

合理设置分片数

分片和副本的设计为ES提供了支持分布式和故障转移的特性,但并不意味着分片和副本是可以无限分配的。而且索引的分片完成分配后由于索引的路由机制,我们是不能重新修改分片数的

可能有人会说,我不知道这个索引将来会变得多大,并且过后我也不能更改索引的大小, 所以为了保险起见,还是给它设为 1000 个分片吧。但是需要知道的是,一个分片并不是没有代价的。需要了解:

一个分片的底层即为一个Lucene索引,会消耗一定文件句柄、内存、以及 CPU 运转。

每一个搜索请求都需要命中索引中的每一个分片,如果每一个分片都处于不同的节点还好, 但如果多个分片都需要在同一个节点上竞争使用相同的资源就有些糟糕了

用于计算相关度的词项统计信息是基于分片的。如果有许多分片,每一个都只有很少的数据会导致很低的相关度。

一个业务索引具体需要分配多少分片可能需要架构师和技术人员对业务的增长有个预先的判断,横向扩展应当分阶段进行。为下一阶段准备好足够的资源。 只有当你进入到下一个阶段,你才有时间思考需要作出哪些改变来达到这个阶段。一般来说,我们遵循一些原则:

控制每个分片占用的硬盘容量不超过 ES 的最大 JVM 的堆空间设置(一般设置不超过 32G,参考下文的 JVM 设置原则),因此,如果索引的总容量在 500G 左右,那分片大小在 16 个左右即可;当然, 最好同时考虑原则 2。

考虑一下 node 数量,一般一个节点有时候就是一台物理机,如果分片数过多,大大超过了节点数, 很可能会导致一个节点上存在多个分片,一旦该节点故障,即使保持了 1 个以上的副本,同样有可能会导致数据丢失,集群无法恢复。所以, 一般都设置分片数不超过节点数的 3

节点数<=主分片数*(副本数+1)


主分片,副本和节点最大

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值