bzoj1901

树状数组套权值线段树

单点修改logn 然后树状数组将序列分成了log段 每段都暴力修改 这样一次修改的复杂度是log^2的

然后查询就将这个[1,r]的所有权值线段树之和减去[1,l-1]的所有权值线段树之和,在这个值上面二分就可以了

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <map>
#define lch a[n].lc
#define rch a[n].rc
using namespace std;
const int maxn=2e5+10;
int n,m,aa[maxn],v[maxn],topt,root[maxn],cnt,linum,to[maxn],LT[maxn],RT[maxn],cntl,cntr;
struct da{int lc,rc,si;}a[100*maxn];
struct daa{char s[3]; int l,r,k;}q[maxn];
map<int,int>lc;
inline int lowbit(int x){return x&(-x);}
inline void updata(int n){a[n].si=a[lch].si+a[rch].si;}
void tree_add(int &n,int l,int r,int lc,int k)
{
    if (!n) n=++topt;
    if (l==r) {a[n].si+=k; return;}
    int mid=(l+r)>>1;
    if (lc<=mid) tree_add(lch,l,mid,lc,k);else tree_add(rch,mid+1,r,lc,k);
    updata(n);
}
void add(int x,int k)
{
    int now=x;
    while (x<=n)
    {
        tree_add(root[x],1,linum,aa[now],k);
        x+=lowbit(x);
    }
}
int qury(int l,int r,int k)
{
    if (l==r) return l;
    int sum=0,mid=(l+r)>>1;
    for (int i=1;i<=cntl;++i) sum-=a[a[LT[i]].lc].si;
    for (int i=1;i<=cntr;++i) sum+=a[a[RT[i]].lc].si;
    if (sum>=k)
    {
        for (int i=1;i<=cntl;++i) LT[i]=a[LT[i]].lc;
        for (int i=1;i<=cntr;++i) RT[i]=a[RT[i]].lc;
        return qury(l,mid,k);
    }
    else
    {
        for (int i=1;i<=cntl;++i) LT[i]=a[LT[i]].rc;
        for (int i=1;i<=cntr;++i) RT[i]=a[RT[i]].rc;
        k-=sum; return qury(mid+1,r,k);
    }
}
inline int read()
{
    int xx=0,ff=1; char c=getchar();
    while (c<'0' || c>'9') {if (c=='-') ff=-1; c=getchar();}
    while (c>='0' && c<='9') {xx=(xx<<1)+(xx<<3)+c-'0'; c=getchar();}
return xx*ff;
}
int main()
{
    n=read(); m=read(); register int i,j;
    for (i=1;i<=n;++i) aa[i]=read(),v[++cnt]=aa[i];
    for (i=1;i<=m;++i)
    {
        scanf("%s",q[i].s+1);
        if (q[i].s[1]=='Q') q[i].l=read(),q[i].r=read(),q[i].k=read();
        else q[i].l=read(),q[i].k=read(),v[++cnt]=q[i].k;
    }
    sort(v+1,v+cnt+1);
    for (i=1;i<=cnt;++i) if (!lc.count(v[i])) lc[v[i]]=++linum,to[linum]=v[i];
    for (i=1;i<=n;++i) aa[i]=lc[aa[i]],add(i,1);
    for (i=1;i<=m;++i)
    if (q[i].s[1]=='C') {q[i].k=lc[q[i].k]; add(q[i].l,-1); aa[q[i].l]=q[i].k; add(q[i].l,1);}
    else
    {
        cntl=0; cntr=0;
        for (j=q[i].l-1;j>0;j-=lowbit(j)) LT[++cntl]=root[j];
        for (j=q[i].r;j>0;j-=lowbit(j)) RT[++cntr]=root[j];
        printf("%d\n",to[qury(1,linum,q[i].k)]);
    }
return 0;
}

发布了124 篇原创文章 · 获赞 92 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览