密码学 总结

群 环 域

群 group

G是一个集合,在此集合上定义代数运算*,若满足下列公理,则称G为群。
1.封闭性 a ∈ G , b ∈ G a\in G,b\in G aG,bG=> a ∗ b ∈ G a*b\in G abG
2.G中有恒等元素e,使得任何元素与e运算均为元素本身(如:单位矩阵、加法的0,乘法的1)
3.G的每个非0元素都有逆元素,使得元素*逆元素=e(如:加法中的负数,乘法中的倒数)
4.满足结合律

阿贝尔群(可交换群):
1.满足群的四条公理
2.满足交换律(矩阵不满足)

例:(7,3)码在模2加法下构成群,(n,k)码又称群码
0000000 单位元
0011101
0100111
0111010
1001110
1010011
1101001
1110100
封闭性可验证。存在e。每个元素的逆都是他们本身。模2加法相当于异或,满足结合律。故此运算为群。
线性分组编码

环 Ring

R是一个集合,在其上定义两种代数运算+、*,若满足下列公理则称为环
1.+下构成群
2.*下满足封闭性
3. *下满足结合律
4. 分配律成立(包括左分配和右分配)
左分配:a(b+c)=ab+ac
右分配:(b+c)a=ba+ca
如:矩阵的乘对加满足分配律

e.g.
整数集合是环,加法和乘法构成整数环
实系数的多项式环
在这里插入图片描述

域 Field

在F集合上定义两种代数运算+和*,若满足下列公理,则F称为域
1.在加法下构成群
2.全体非0元素构成交换乘群(=加法和乘法都成群)
3.对加法和乘法分配律成立

域是有单位元素、非0元素有逆元素的交换环
e,g,以p=3为模的剩余类全体{0,1,2}构成域

有限域:域中元素数目是有限的; 记为: GF(q)q为域的阶,称为q元域;
无限域:域中元素的数目是无限的;
域的阶:域中元素的数目;

GF(2)为二元域,是最小的域
实际应用中,q的量级是 2 1024 2^{1024} 21024,非常巨大

数域包括 复数域、实数域、有理数域

二元域上的多项式

系数取自GF(2),含有一个未定元x的多项式称为GF(2)上的多项式,用f(x)表示。
多项式的加法:同幂次的系数相加
多项式的乘法:正常展开
相加时使用模2加法,即异或,即不进位的加法
x 2 − x = x 2 + ( 1 ) − 1 x = x 2 + x x^2-x=x^2+(1)^{-1}x=x^2+x x2x=x2+(1)1x=x2+x

二元域上的既约多项式

f(x)是次数>0的多项式,若除了1和多项式本身以外,不能再被GF(2)上的其他多项式除尽,则称为f(x)是二元域上的既约多项式(不可约多项式)。
即,不能分解为两个多项式的乘积
e.g.m=4,f(x)= x 4 + x + 1 x^4+x+1 x4+x+1 等价于五元向量(1,0,0,1,1)

f(x)不能在GF(2)上分解,但可以在更大的范围域内分解
定义:如果有两个域F1,F2,如果 F 1 ⊂ F 2 F_1\subset F_2 F1F2,则F2是F1的扩域。
在域F1上的一个不可约多项式,在其扩域F2上可能有根,如果f(x)在F2上有根 α \alpha α,则在F2上f(x)有分解因子 ( x − α ) (x-\alpha ) (xα)

e.g. x 2 + 1 x^2+1 x2+1在R内不可分解,但在复数域上可以分解为(x+i)(x-i)

设P(x)是GF(2)上的m次既约多项式,GF(2)上所有次数小于m的多项式的全体,在模2加法、模P(x)乘法运算下构成一个 2 m 2^m 2m阶的有限域,称为GF( 2 m 2^m 2m),GF(2)是扩域GF( 2 m 2^m 2m)的基域。扩域GF( 2 m 2^m 2m)中有 2 m 2^m 2m个元素,每个元素形如: a m − 1 x m − 1 + a m − 2 x m − 2 + . . . + a 1 x + a 0 a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+...+a_1x+a_0 am1xm1+am2xm2+...+a1x+a0,可记为m维二元向量的形式( a m − 1 , a m − 2 , . . . , a 1 , a 0 a_{m-1},a_{m-2},...,a_1,a_0 am1,am2,...,a1,a0)

设P(x)是GF(2)上的一个m次既约多项式,如果构成的扩域GF( 2 m 2^m 2m)中的全体非0多项式元素对模P(x)乘法构成乘法循环群,即,存在GF( 2 m 2^m 2m)的一个非0元素 α ∈ G F ( 2 m ) \alpha \in GF(2^m) αGF(2m),它的各次幂 α 0 , α 1 , . . . , α 2 m − 2 \alpha ^0,\alpha ^1,...,\alpha ^{2^m-2} α0,α1,...,α2m2恰好构成扩域GF( 2 m 2^m 2m)的全部非零元素,则称P(x)是GF(2)上的一个m次本原多项式。有:
1. α \alpha α是GF(2)的一个本原元
2. α \alpha α是GF(2)上的既约多项式P(x)在扩域GF( 2 m 2^m 2m)中的一个根
3.GF(2)上的本原多项式P(x)在扩域GF( 2 m 2^m 2m)中的任何一个根都是本原元

e.g.
在这里插入图片描述
( 0 , 1 , α , α 2 , . . . . , α 14 ) (0,1,\alpha,\alpha^2,....,\alpha^{14}) (0,1,α,α2,....,α14)构成域,称为GF(2)的4次扩域。域的阶为16,记为GF( 2 4 2^4 24)。也构成循环群。

求逆:扩展欧几里得算法

对称加密算法 AES

AES(Advanced Encryption Standard) 之 Rijndael算法

迭代分组密码,分组长度为128b,密码长度为128/192/256b,相应的轮数r为10/12/14

讨论密钥长度为128b,分组长度为128b的情况
128b的消息被分为16个字节,每字节8位,记为InputBlock=m0,m1,m2…m15
密钥分组如下:InputKey=k0,k1,k2…k15
内部数据结构表示为一个4x4的矩阵:
I n p u t B l o c k = [ m 0 m 4 m 8 m 12 m 1 m 5 m 9 m 13 m 2 m 6 m 10 m 14 m 3 m 7 m 11 m 15 ] InputBlock=\begin{bmatrix} m0& m4& m8& m12\\ m1& m5& m9& m13\\ m2& m6& m10& m14\\ m3& m7& m11& m15 \end{bmatrix} InputBlock= m0m1m2m3m4m5m6m7m8m9m10m11m12m13m14m15

I n p u t K e y = [ k 0 k 4 k 8 k 12 k 1 k 5 k 9 k 13 k 2 k 6 k 10 k 14 k 3 k 7 k 11 k 15 ] InputKey=\begin{bmatrix} k0& k4& k8& k12\\ k1& k5& k9& k13\\ k2& k6& k10& k14\\ k3& k7& k11& k15 \end{bmatrix} InputKey= k0k1k2k3k4k5k6k7k8k9k10k11k12k13k14k15

轮变换

Round(State,RoundKey)
State是轮消息矩阵,被看作输入和输出,RoundKey是轮密钥矩阵,由输入密钥通过密钥表导出,一轮的完成将导致State的元素改变状态。
每轮变换由四个不同的变换组成:

SubBytes(State)

模f(x)= x 8 + x 4 + x 3 + x + 1 x^8+x^4+x^3+x+1 x8+x4+x3+x+1得到扩域GF( 2 8 2^8 28),有256个元素。
SubBytes函数为State的每个字节(x)提供非线性变换,任一非0的字节x ∈ F 2 8 \in F_{2^8} F28被下面的变换取代: y = A x − 1 + b y=Ax^{-1}+b y=Ax1+b 。求逆体现了变换的非线性,A是可逆的,所以此变换可逆。
在这里插入图片描述
e.g.
在这里插入图片描述
由于系数是0或1,因此可以将任何这样的多项式表示为比特串
加法是这些位串的XOR
乘法是移位&XOR
通过用不可约多项式的余数重复替换最高幂来实现模约简(也称为移位和XOR)

ShiftRows(State)

在这里插入图片描述
每行分别循环左移0,1,2,3位

MixColumns(State)

这个函数对State的每一列作用,迭代四次,下面仅仅描述对一列的作用:
令State的一列为: [ S 0 S 1 S 2 S 3 ] \begin{bmatrix} S_0\\ S_1\\ S_2\\ S_3 \end{bmatrix} S0S1S2S3 ,把这一列表示为三次多项式: s ( x ) = s 3 x 3 + s 2 x 2 + s 1 x + s 0 s(x)=s_3x^3+s_2x^2+s_1x+s_0 s(x)=s3x3+s2x2+s1x+s0,因为s(x)的系数是字节,也就是说是 F 2 8 F_2^8 F28域中的元素,所以这个多项式是 F 2 8 F_2^8 F28上的。
列s(x)上的运算定义为将这个多项式乘以一个固定的3次多项式c(x),然后模x4+1:
d ( x ) = c ( x ) × s ( x ) ( m o d   x 4 + 1 ) d(x) = c(x) × s(x) (mod \ x^4+1) d(x)=c(x)×s(x)(mod x4+1)
c ( x ) = c 3 x 3 + c 2 x 2 + c 1 x + c 0 c(x)=c_3x^3+c_2x^2+c_1x+c_0 c(x)=c3x3+c2x2+c1x+c0
其中, x i ( m o d   x 4 + 1 ) = x i m o d 4 x^i(mod \ x^4+1)=x^{imod4} xi(mod x4+1)=ximod4
Rijndeal给出:c3=“03”, c2=“01”, c1=“01”, c0=“02”
在乘积d(x)中,x2的系数是d2=c2s0+c1s1+c0s2+c3s3
上述乘法的系数可以写成以下矩阵乘法:在这里插入图片描述
F 8 F_8 F8上,c(x)与 x 4 + 1 x^4+1 x4+1是互素的,所以在 F 8 ( x ) F_8(x) F8(x)中,逆 c ( x ) − 1 ( m o d x 4 + 1 ) c(x)^{-1} (modx^4+1) c(x)1(modx4+1)是存在的。这等于说,上述矩阵变换是可逆的。

AddRoundKey(State, RoundKey)

这个函数是逐字节、逐比特地将RoundKey中的元素与State中的元素相加。这里的加,是F2中的加,也就是异或运算,是平凡可逆的。
不同轮的密钥比特是不同的。它们使用一个固定的“密钥表”导出密钥,每轮密钥不同,该“密钥表”是非秘密的。具体细节可参阅有关NIST的标准文件。

解密

在这里插入图片描述

非对称加密算法 RSA

非对称,指的是加密和解密的密钥不同,又称双钥密码技术、公钥密码技术。
当密钥足够长(现在常用1024bit以上)时,破解极其困难。

特点

公钥可以公布,私钥不可公布。
由私钥可以容易计算出公钥,反之困难。

陷门单向函数

若函数f:A->B可逆(单射+满射),且满足对 x ∈ A x\in A xA,易于求解f(x),但由f(x)求x极为困难,则称为 单向函数
陷门单项函数
f z : A z − > B z , z ∈ Z f_z:A_z->B_z,z\in Z fz:Az>Bz,zZ,Z是陷门信息集合。
1)在给定 z ∈ Z z\in Z zZ下容易找到一对算法 E z E_z Ez D z D_z Dz,使得对所有 x ∈ A x\in A xA,易于计算 f z f_z fz及其逆,即: f z ( x ) = E z ( x ) , D z ( f z ( x ) ) = x f_z(x)=E_z(x),D_z(f_z(x))=x fz(x)=Ez(x),Dz(fz(x))=x
2)只给定 E z E_z Ez D z D_z Dz时,对所有 x ∈ A x\in A xA都很难从 y = f z ( x ) y=f_z(x) y=fz(x)中计算出x

单向函数是求逆困难的函数,而陷门单项函数是在不知道陷门信息下求逆困难、在知道陷门信息下求逆容易的函数。

用于构造双钥密码的单向函数

  1. 多项式求根
    有限域GF§上的多项式 y = f ( x ) = ( x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 ) m o d   p y=f(x)=(x^n+a_{n-1}x^{n-1}+...+a_1x+a_0)mod \ p y=f(x)=(xn+an1xn1+...+a1x+a0)mod p,当给定a,x,p后,很容易求出f(x),但已知a,y,p,想求x非常困难,n,p很大时几乎无法求解。

  2. 离散对数DL
    p是大素数,a是{0,1,2…,p-1}中与p互素的数。
    已知p,a,x,求f(x)= a x m o d   p a^xmod\ p axmod p很容易,但已知p,a,f(x),求x(离散对数)很困难,计算时间是指数级

  3. 大整数分解FAC
    已知大素数p,q,求n=pq只需一次乘法,但已知n求pq非常困难,已知算法有:
    试除法、二次筛、数域筛、椭圆曲线。
    给定n求pq的问题称为rsa问题。求n=pq分解的问题与以下几个问题等价:
    1)给定m,c,n,求d使得 c d = m   m o d   n c^d=m\ mod\ n cd=m mod n
    2)给定k,c,n,求m使得 m k = c   m o d   n m^k=c \ mod\ n mk=c mod n
    3)给定x,m,求是否存在y使得 x = y 2   m o d   m x=y^2\ mod\ m x=y2 mod m(二次剩余问题)

  4. 背包问题

  5. 菲-赫尔曼问题 DHP
    给定素数p,可构造一乘群 Z p ∗ = { 1 , 2 , . . . p − 1 } Z^*_p=\{1,2,...p-1\} Zp={1,2,...p1},令a为Z的生成元,若已知 a a , a b a^a,a^b aa,ab,求 a a b a^{ab} aab

  6. 二次剩余问题QR
    给定奇合数n和整数a,决定a是否为mod n的平方剩余

  7. 模n的平方问题 SQROOT

RSA算法

安全性依赖于大整数分解的难度
n = p q , φ ( n ) = ( p − 1 ) ( q − 1 ) n=pq,\varphi(n)=(p-1)(q-1) n=pq,φ(n)=(p1)(q1)为欧拉函数
公钥为e,满足 ( e , φ ( n ) ) = 1 (e,\varphi(n))=1 (e,φ(n))=1,私钥为d, d = e − 1 m o d   φ ( n ) d=e^{-1}mod\ \varphi(n) d=e1mod φ(n)
加密:m->c= m e m o d   n m^emod\ n memod n
解密:c->m= c d m o d   n c^dmod\ n cdmod n

也就是找三个大素数p,q,e,求出 d = e − 1 m o d φ ( n ) d=e^{-1}mod \varphi(n) d=e1modφ(n),求逆的方法是扩展欧几里得算法。
公钥是n,e,密钥是d,公钥可公开,密钥不可公开, φ ( n ) , p , q \varphi(n),p,q φ(n),p,q都应该销毁。

用途

加密:A->用B的公钥加密->密文->用B的私钥解密->B,常用于交换对称加密算法的密钥,因为加密解密速度较慢。
数字签名:A->用A的私钥加密->签名->用A的公钥解密->B 得以验证
在这里插入图片描述
在这里插入图片描述

代码实现思路

建议用python写
大素数生成:随机生成512位二进制数,用Miller-Rabin素性检测,得到三个大素数p,q,e,其中pq用来生成n,e当作公钥。
用扩展欧几里得算法得到e模 ϕ ( n ) \phi(n) ϕ(n)的逆x,这是私钥。
用快速幂算法对明文进行加密,对密文进行解密。其中明文需要分组加密,分组时可以加前导1和0进行填充。

消息认证与杂凑函数

杂凑(哈希)函数

哈希函数可将任意串压缩成固定长度的比特串,哈希函数相关词汇有:hash code, hash result, imprint(短烙印), cryptographic checksum, fingerprint(数字指纹)…

哈希函数:y=H(x)

  1. x长度任意,y长度固定
  2. 单向:由x计算y很简单,由y反推x很困难
  3. 无碰撞:寻找 x 1 ! = x 2 x_1!=x_2 x1!=x2,使得 H ( x 1 ) = H ( x 2 ) H(x_1)=H(x_2) H(x1)=H(x2)很困难
    (显然哈希函数不是单射函数,但是想碰撞也并不容易)
  4. 雪崩效应:输入的很小变动可以引起输出的较大变动

分类:

  1. 校验和 cyclic redundancy check (CRC) 循环冗余校验(计网里有相关的题)
  2. 消息验证码 MAC
  3. 消息检测码 MDC
    1. 单向哈希函数 one-way hash function, OWHF
    2. 抗碰撞hash函数 collision resistant hash function, CRHF(是更好的强单向哈希函数)
  4. 无碰撞性哈希函数 collision free hash function (存在,但很难找到)

应用:
消息摘要、数字指纹、密文防篡改、作为伪随机函数

常用哈希函数:MD5,SHA

消息认证码(密码校验和)MAC

message authentication code

M A C = h ( M ∣ ∣ k ) MAC=h(M||k) MAC=h(M∣∣k),其中,M是一个变长的消息,K是收发双方共享的密钥,h是哈希函数。
发送者将 ( M , h ( M ∣ ∣ k ) ) (M,h(M||k)) (M,h(M∣∣k))发送,接收者收到消息后,把M加上k哈希,得到MAC’,比较和MAC是否相同,如果相同,则消息未被篡改。
有一些消息是不需要保密,但需要防篡改的,任一拥有密钥的人都可以验证消息的真实性。

消息检测码(篡改验证码) MDC

manipulation detection code
M D C = h ( m ) MDC=h(m) MDC=h(m),发送者发送MDC,接收者验证h’(m)=?h(m)

迭代哈希函数:
消息X被分为t个分组: X 1 , X 2 , . . . , X t X_1,X_2,...,X_t X1,X2,...,Xt(需要padding),计算
H 0 = I V , H i = f ( X i , H i − 1 ) , . . . , h ( X ) = g ( H t ) H_0=IV,H_i=f(X_i,H_{i-1}),...,h(X)=g(H_t) H0=IV,Hi=f(Xi,Hi1),...,h(X)=g(Ht),其中h是哈希函数,f是轮函数,g是输出变换,IV是一个初始值

提供保密&消息验证的方式:
将M进行哈希,和密钥连接起来,对二者进行对称加密,得到 E k ( M ∣ ∣ H ( M ) ) E_k(M||H(M)) Ek(M∣∣H(M)),其中, E k E_k Ek是对称加密,k是密钥,M是明文。将这堆东西发送,接收者收到后,先用对称密钥解密,然后计算H‘(M),比较是否相等。

仅提供消息认证:
将H(M)加密,将M明文和加密的H(M)送给接收方,接收方解密后验证。

SHA与MD4和MD5的比较

项目MD4MD5SHA
Hash值128bit128bit160bit
分组长度512bit512bit512bit
基本逻辑函数343
步数3*16=484*16=644*20=80
速度11/73/4

MD5

md=mesage digest ,md5现已被攻破 (碰撞性)
在这里插入图片描述

  1. 先对消息进行分组,512bit一组,最后一组需要填充,先填充100……0,使得最后一组的长度正好缺64位才达到512位,剩余的64位,用原消息长度mod 2 64 2^{64} 264填充。
    对每个512的分组再次划分,分为16个32位的子分组。
  2. 初始化MD缓冲区
    A: 01 23 45 67(A=67452301)
    B: 89 ab cd ef (B=efcdab89)
    C: fe dc ba 98(C=98badcfe)
    D: 76 54 32 10(D=10325476)
    初始化用于计算消息摘要的128位缓冲区。这个缓冲区由四个32位寄存器A、B、C、D表示。寄存器的初始化值为按低位字节在前的顺序存放
  3. 按512位的分组处理输入消息
    这一步为MD5的主循环,包括四轮,如下所示。每个循环都以当前的正在处理的512比特分组Yq和128比特缓冲值ABCD为输入,然后更新缓冲内容。
    在这里插入图片描述
    图中,四轮的操作类似,每一轮进行16次操作。各轮的操作过程如下图所示。
    在这里插入图片描述
    四轮操作的不同之处在于每轮使用的非线性函数不同,在第一轮操作之前,首先把A、B、C、D复制到另外的变量a、b、c、d中。这四个非线性函数分别为(其输入/输出均为32位字)
    在这里插入图片描述
    其中,^表示按位与;v表示按位或;-表示按位反;⊕表示按位异或;+表示模 2 32 2^{32} 232 加;x<<<s表示循环左移s位(0<=s<=31)
    这一步中还用到了一个有64个元素的表T[1…64],T[i]是 2 32 ∣ s i n ( i ) ∣ 2^{32}|sin(i)| 232sin(i)的整数部分 ,i的单位为弧度。

根据以上描述,将这一步骤的处理过程归纳如下:

for i = 0 to N/161 do 
 /* 每次循环处理16个字,即512字节的消息分组*/
     /*把第i个字块(512位)分成16个32位子分组拷贝到X中*/
    for j = 0 to 15 do
       Set X[j] to M[i*16+j]
     end         /*j 循环*/
/*把A存为AA,B存为BB,C存为CC,D存为DD*/

AA = A
BB = B
CC = C
DD = D

 /* 第一轮*/
/* 令[abcd k s i]表示操作
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s)
其中,Y<<<s表示Y循环左移s位*/
/* 完成下列16个操作*/
[ABCD  0   7  1] [DABC  1   12  2] [CDAB  2   17  3] [BCDA  3   22  4]
[ABCD  4   7  5] [DABC  5   12  6] [CDAB  6   17  7] [BCDA  7   22  8]
[ABCD  8   7  9] [DABC  9   12  10] [CDAB  10  17  11] [BCDA  11  22  12]
[ABCD  12  7  13] [DABC  13  12  14] [CDAB  14  17  15] [BCDA  15  22  16]
/*令[abcd k s i]表示操作


/* 第二轮*/
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s)*/
/*完成下列16个操作*/
[ABCD  1   5  17] [DABC  6   9  18] [CDAB  11  14  19] [BCDA  0   20  20]
[ABCD  5   5  21] [DABC  10  9  22] [CDAB  15  14  23] [BCDA  4   20  24]
[ABCD  9   5  25] [DABC  14  9  26] [CDAB  3   14  27] [BCDA  8   20  28]
[ABCD  13  5  29] [DABC  2   9  30] [CDAB  7   14  31] [BCDA  12  20  32]

/*第三轮*/
/*令[abcd k s t]表示操作
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s)*/
/*完成以下16个操作*/
[ABCD  5   4  33]      [DABC  8   11  34] 
[CDAB  11  16  35]   [BCDA  14  23  36]
[ABCD  1   4  37]      [DABC  4   11  38] 
[CDAB  7   16  39]    [BCDA  10  23  40]
[ABCD  13  4  41]     [DABC  0   11  42] 
[CDAB  3   16  43]    [BCDA  6   23  44]
[ABCD  9   4  45]      [DABC  12  11  46] 
[CDAB  15  16  47]   [BCDA  2   23  48] 

/*第四轮*/
/*令[abcd k s t]表示操作
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s) */
/*完成以下16个操作*/
    [ABCD  0   6  49]      [DABC  7   10  50] 
    [CDAB  14  15  51]   [BCDA  5   21  52]
    [ABCD  12  6  53]     [DABC  3   10  54]
    [CDAB  10  15  55]   [BCDA  1   21  56]
    [ABCD  8   6  57]      [DABC  15  10  58] 
    [CDAB  6   15  59]    [BCDA  13  21  60]
    [ABCD  4   6  61]      [DABC  11  10  62] 
    [CDAB  2   15  63]    [BCDA  9   21  64]
     A = A + AA
     B = B + BB
     C = C + CC
     D = D + DD
    end    /*i循环*/
  1. 输出: 由A、B、C、D四个寄存器的输出按低位字节在前的顺序(即以A的低字节开始、D的高字节结束)得到128位的消息摘要

举例:
以求字符串’‘abc’'的MD5散列值为例来说明上面描述的过程。
'‘abc’'的二进制表示为01100001 01100010 01100011。
(1) 填充消息:消息长l=24,先填充1位1,然后填充423位0,再用消息长24,即0x00000000 00000018填充(十六进制),则:
M[0]=61626380 M[1]=00000000
M[2]=00000000 M[3]=00000000
M[4]=00000000 M[5]=00000000
M[6]=00000000 M[7]=00000000
M[8]=00000000 M[9]=00000000
M[10]=00000000 M[11]=00000000
M[12]=00000000 M[13]=00000000
M[14]=00000000 M[15]=00000018
(2) 初始化:
A: 01 23 45 67
B: 89 ab cd ef
C: fe dc ba 98
D: 76 54 32 10
(3) 主循环:利用前面描述的过程对字块1(本例只有一个字块)进行处理。变量a、b、c、d每一次计算后的中间值可根据参考资料提供的C源代码得到,这里不详细列出。
(4) 输出:
消息摘要=90015098 3cd24fb0 d6963f7d 28e17f72

  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值