支持向量机(Support Vector Machine,SVM)是一种经典的机器学习算法,用于解决分类和回归问题。它在许多实际应用中表现出色,具有强大的泛化能力和良好的鲁棒性。本文将详细介绍支持向量机的原理和应用,并提供相应的Python代码示例。
1. 支持向量机原理
支持向量机是基于统计学习理论的一种监督学习算法。其核心思想是通过在特征空间中找到一个超平面,将不同类别的样本分隔开来,并使得两侧距离最近的样本点到该超平面的距离最大化。
对于线性可分的情况,支持向量机的目标是找到一个最优的超平面,使得所有样本点满足以下条件:
- 正类样本点(属于类别1)到超平面的距离大于等于某个阈值;
- 负类样本点(属于类别0)到超平面的距离小于等于某个负阈值。
这些满足条件的样本点被称为支持向量,因为它们对于定义超平面起到了决定性的作用。支持向量机的目标是最大化支持向量到超平面的距离,从而得到最优的分类边界。
对于线性不可分的情况,支持向量机通过使用核函数将样本映射到高维特征空间,使得在高维空间中可以找到一个线性可分的超平面。常用的核函数包括线性核、多项式核和高斯核等。
2. 支持向量机的应用
支持向量机广泛应用于许多领域,包括图像分类、文本分类、生物信息学、金融预测