多类别分类算法:一对一(OvO)和一对剩余(OvR)

本文介绍了多类别分类中的OvO(一对一)和OvR(一对剩余)策略,详细阐述了两种策略的原理及Python实现。OvO将多类别问题转化为K(K-1)/2个二分类问题,而OvR则将其转化为K个二分类问题,分别以一个类别为正例,其余为负例。示例中展示了使用SVM和逻辑回归作为二分类器的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多类别分类是机器学习中常见的任务之一。在处理多类别分类问题时,经常会遇到需要将样本分为多个不同的类别的情况。一对一(OvO)和一对剩余(OvR)是两种常用的多类别分类策略。本文将详细介绍这两种策略,并提供相应的源代码。

一、一对一(OvO)策略

一对一(One-vs-One,简称OvO)策略是将多类别分类问题转化为多个二分类子问题的方法。具体而言,对于K个类别,OvO策略会构建K(K-1)/2个分类器,每个分类器用于区分两个类别。在预测阶段,通过投票或概率加权的方式来确定最终的类别。

下面是使用OvO策略进行多类别分类的Python示例代码:

from sklearn.multiclass import OneVsOneClassifier
from sklearn.svm import SVC
from skle
### OvR分类策略的概念及实现 #### 1. 原理概述 OvR(One-vs-Rest,也称为 One-vs-All 或者 OvA)是一种将多分类问题转换为多个二分类问题的方法。在这种策略下,对于一个具有 \( C \) 类别的数据集,会构建 \( C \) 个独立的二分类模型[^1]。每个模型的目标是区分某一类与其他所有类别之间的差异。 具体来说,在训练阶段,每一轮会选择某一个类别作为正类,而其他所有的类别则被标记为负类。这样可以得到 \( C \) 个不同的 SVM 模型,其中每一个模型专门用于识别某个特定的类别。 #### 2. 实现过程 以下是基于 OvR 的多分类 SVM 的典型实现流程: ##### 训练阶段 在训练过程中,算法会对每一类分别执行一次二分类操作: ```python from sklearn.svm import SVC import numpy as np def train_ovr(X_train, y_train, classes): models = {} for cls in classes: # 创建一个新的标签数组,当前类设为正类 (1),其余为负类 (-1) y_binary = np.where(y_train == cls, 1, -1) # 使用线性核函数创建并训练单个 SVM 模型 model = SVC(kernel='linear', probability=True) model.fit(X_train, y_binary) # 存储该模型以便后续预测使用 models[cls] = model return models ``` 上述代码片段展示了如何针对每个类别单独训练一个 SVM 模型,并将其存储在一个字典中以供后续调用[^2]。 ##### 预测阶段 当需要对新样本进行预测时,OvR 方法会依次利用这些已训练好的模型计算其属于各个类的概率得分,最终选取概率最高的那个类别作为预测结果。 ```python def predict_ovr(models, X_test): predictions = [] for sample in X_test: max_prob = float('-inf') predicted_class = None for cls, model in models.items(): prob = model.predict_proba([sample])[0][1] # 获取正类的概率 if prob > max_prob: max_prob = prob predicted_class = cls predictions.append(predicted_class) return predictions ``` 此部分实现了遍历测试集中每个样本的过程,通过比较不同模型给出的置信度分数决定最后归属哪一类。 #### 3. 特点分析 相比起 OvO 方案而言,OvR 更加直观简单易懂;然而它可能面临不平衡的数据分布带来的挑战——即某些情况下少数几个异常值可能会主导整个系统的决策逻辑。因此实际应用当中还需要考虑诸如权重调整之类的额外措施来缓解此类现象的影响程度。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值