Naive Bayes(朴素贝叶斯)

本文介绍了贝叶斯定理及其在统计学和机器学习中的应用,特别是在朴素贝叶斯分类器中的作用。通过实例解释了如何使用贝叶斯定理进行概率推断,并详细阐述了高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯的原理。此外,还提及了在Python中使用numpy和matplotlib进行相关计算和绘图的方法。
摘要由CSDN通过智能技术生成

Naive Bayes

Bayes’ theorem(贝叶斯法则)

在概率论和统计学中,Bayes’ theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示:

P(A|B)=P(B|A)P(A)P(B)(1) (1) P ( A | B ) = P ( B | A ) P ( A ) P ( B )

  • P(A|B) – 在事件B下事件A发生的条件概率
  • P(B|A) – 在事件A下事件B发生的条件概率
  • P(A), P(B) – 独立事件A和独立事件B的边缘概率

Bayesian inferenc(贝叶斯推断)

贝叶斯定理的许多应用之一就是贝叶斯推断,一种特殊的统计推断方法,随着信息增加,贝叶斯定理可以用于更新假设的概率。在决策理论中,贝叶斯推断与主观概率密切相关,通常被称为“Bayesian probability(贝叶斯概率)”。

贝叶斯推断根据 prior probability(先验概率) 和统计模型导出的“likelihood function(似然函数)”的结果,再由贝叶斯定理计算 posterior probability(后验概率):

P(H|E)=P(E|H)P(H)P(E)(2) (2) P ( H | E ) = P ( E | H ) P ( H ) P ( E )

  • P(H) – 已知的先验概率
  • P(H|E) – 我们想求的后验概率,即在B事件发生后对于事件A概率的评估
  • P(E|H) – 在事件H下观测到E的概率
  • P(E) – marginal likelihood(边际似然),对于所有的假设都是相同的,因此不参与决定不同假设的相对概率
  • P(E|H)/P(E) – likelihood function(可能性函数),这是一个调整因子,通过不断的获取信息,可以使得预估概率更接近真实概率

贝叶斯推断例子

假设我们有两个装满了饼干的碗,第一个碗里有10个巧克力饼干和30个普通饼干,第二个碗里两种饼干都有20个。我们随机挑一个碗,再在碗里随机挑饼干。那么我们挑到的普通饼干来自一号碗的概率有多少?

我们用 H1 代表一号碗,H2 代表二号碗,而且 P(H1) = P(H2) = 0.5。事件 E 代表普通饼干。由上面可以得到 P(E|H1) = 30 / 40 = 0.75,P(E|H2) = 20 / 40 = 0.5。由贝叶斯定理我们可以得到:

  • 5
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值