目录
-
-
- Q1.损失函数和目标函数的区别与联系
- Q2.多分类问题的常见解决方法
- Q3 解释KL散度基本概念及在损失函数构建过程中的作用
- Q4.详细介绍F1-Score和ROC-AUC指标计算过程
- 如何解决正负样本不均衡:
- Focal loss
- smooth L1的优点
- 卷积有什么特点?
- BN是怎么计算的?
- BN解决的问题
- batch size大小对训练过程的影响?
- 激活函数的作用:
- 激活函数有哪些?
- Momentum优化算法原理及作用?
- 池化层如何反向传播
- 解决过拟合的方法
- 图像感受野如何计算
- 增大感受野的方法
- 1*1卷积核的作用
- 网络每一层是否只能用一种尺寸的卷积核?
- SGD、Momentum、Adam的区别
- R-CNN、SPPNet、SSD的区别
- 卷积神经网络的平移不变性
- 转置卷积和空洞卷积的区别
- 转置卷积的棋盘效应
- 深度可分离卷积
- PCA分析(主成分分析法):
- Resnet 网络为什么有效?
- Dropout和权重剪枝的区别
- 全连接层和全局池化的区别
- 全局池化是否可以替代全连接层:
- L2权重衰减和L2正则化的区别:
- SENet
- 常见的距离度量
-
Q1.损失函数和目标函数的区别与联系
参考答案
损失函数(Loss Function)是用来衡量模型预测结果和真实结果之间差异的一种函数,通常用于监督学习任务中。损失函数的值越小,表示模型的预测结果越接近真实结果。
**目标函数(Objective Function)**是在优化模型的过程中所要最小化或最大化的函数。通常情况下,目标函数就是损失函数,因为我们的目标是最小化模型的预测误差。
但是,在某些情况下,目标函数可能不仅仅是损失函数。例如,当我们在训练带有正则化的模型时,目标函数可能包括两部分:损失函数和正则化项。在这种情况下,我们的目标是同时最小化损失函数和正则化项的值。
总之,损失函数和目标函数是机器学习和深度学习中非常重要的概念,它们帮助我们评估和优化模型的性能,提高预测的准确度。
Q2.多分类问题的常见解决方法
参考答案
核心方法包括三种,分别是OvO、OvR和MvM。其中OvO具备性能优势,而MvM则具备判断效力优势。
深度解析:三种多分类问题解决方案
多分类问题描述
当离散型标签拥有两个以上分类水平时,即对多个(两个以上)分类进行类别预测的问题,被称为多分类问题。例如有如下四分类问题简单数据集:
OvO策略
拆分策略
OvO的拆分策略比较简单,基本过程是将每个类别对应数据集单独拆分成一个子数据集,然后令其两两组合,再来进行模型训练。例如,对于上述四分类数据集,根据你签类别可将其拆分成四个数据集,然后再进行两两组合,总共有6种组合,也就是C2种组合。拆分过程如下所示:
OvR策略
拆分策略:
和Ovo的两两组合不同,OvR策略则是每次将一类的样例作为正例、其他所有数据作为反例来进行数据集拆分。对于上述四分类数据集,OvR策略最终会将其拆分为4个数据集,基本拆分过程如下:
此4个数据集就将训练4个分类器。注意,在OvR的划分策略种,是将rest无差别全都划分为负类。当然,如果数据集总共有N个类别,则在进行数据集划分时总共将拆分成N个数据集。
OvO和OvR的比较
对于这两种策略来说,尽管OvO需要训练更多的基础分类器,但由于OvO中的每个切分出来的数据集都更小,因此基础分类器训练时间也将更短。因此,综合来看在训练时间开销上,OvO往往要小于OvR。而在性能方面,大多数情况下二者性能类似。
MvM策略
相比于OvO和OvR,MM是一种更加复杂的策略。MvM要求同时将若干类化为正类、其他类化为负类,并且要求多次划分,再进行集成。一般来说,通常会采用一种名为“纠错输入码”(Error Correcting Output Codes,简称ECOC)的技术来实现MvM过程。
拆分策略
此时对于上述4分类数据集,拆分过程就会变得更加复杂,我们可以任选其中一类作为正类、其余作为负类,也可以任选其中两类作为正类、其余作为负数,以此类推。由此则诞生出了非常多种子数据集,对应也将训练非常多个基础分类器。例如对于以上数据集,有如下的划分方式:
Q3 解释KL散度基本概念及在损失函数构建过程中的作用
参考答案
相对嫡也被称为Kullback-Leibler散度(KL散度)或者信息散度(information divergence)。通常用来衡量两个随机变量分布的差异性,在模型训练中,KL散度可以用来衡量模型输出分布与真实分布之间的差异; 在深度学习中,KL散度常常被用于衡量两个概率分布之间的差异,例如在变分自编码器(Variational Autoencoder,VAE)和生成对抗网络(Generative Adversarial Networks,GAN)中。
深度解析:通过KL散度构建二分类交叉嫡损失函数
假设对同一个随机变量x,有两个单独的概率分布P(x)和Q(x),当X是离散变量时,我们可以通过如下相对嫡计算公式来衡量二者差异:
KL散度 = 交叉熵 - 信息熵