【面经】超全版本AIGC算法工程师面经

本篇为来自各大厂从业者等业内人士做的免费面经总结,希望能为想进入或者即将入行这一领域的小伙伴提供一些有益的参考和指导!超强干货!建议点赞收藏!
在这里插入图片描述

1. 个人项目介绍

对于所有的相关经历,都是跟面试官聊技术的切入点,大家一定要进行详细的准备,具体的注意点如下:(举例,提供参考方向)

1.1 如何介绍

从数据规模、特征、指标、目前使用的模型方法、项目难点详细介绍。

1.2 加分点

自己的思考、学习、成长

一定要明确地说出自己做的项目亮点! 一定要仔细地思考,业务考虑得够广,技术考虑得够深。

1.3 注意事项

不要只描述业务,用到了这个岗位对应到的哪些技术,从自己的能力、自己设计的方案出发。

用到的技术一定要详细准备。

2.深度学习基础

2.1 公式理解类

在实际面试中,这类问题很大概率需要手写,或者需要很清晰地讲出公式含义及原理,这个过程中可能会遭到反复拷打,甚至手撕代码。

2.2 模型训练通识

模型训练通识类题目,此类宽泛的问题类似于命题作文,看似简单且答案明确,但实际考量的空间非常大;
单纯地背完八股面试官往往是不满意的,一般的反应是再问更细节的内容或者直接反馈觉得你还说的不够。

这种时候最好要结合一些自身的实践经验,或者将题目与答案说得更深一些。

  • 介绍一下L1、L2正则化 L1 为啥能得到稀疏

  • 激活函数的优缺点:sigmoid、tanh、relu、gel

  • 如何处理数据不平衡问题

  • 训练中学习率调整策略是怎样的

  • 介绍一些神经网络初始化的一些方法

  • 有哪些归一化方案

3. 细分算法

3.1 NLP问题

NLP系列问题还是需要结合项目经历,尽量把自己项目中涉及到的技术讲透彻。

3.2 Transformer细节问题

  • 为什么transformer用Layer Norm?有什么用?

  • transformer为什么要用三个不一样的QKV?

  • Bert中为什么要在开头加个[CLS]?

  • Bert中有哪些地方用到了mask?

  • Bert为什么要使用warmup的学习率trick

更多Transformer问题和解答的详细链接一

3.3 大模型问题

大模型系列目前涉及到的岗位和内容应用实际是非常多的,所以除了简单的问题罗列,这里做了一个大致的学习路线分类。
目前针对大模型的单个岗位会结合场景去靠,除了文本,还需要考虑图像embedding、数值、逻辑推理类型的数据用于指令微调时更深度的用法。
此外具体对应到的哪些技术,要从自己的能力、自己设计的方案出发;场景中用到的技术一定要详细准备。

  • 介绍一下常见大模型结构:gpt、bart、t5等

  • in-context learning和传统finetune的区别

  • prompt-tuning和prefix-tuning的区别,各自的优缺点

  • 解释一下大模型的位置编码(rope等)

  • 介绍一下gpt的训练流程

  • MoE的原理

……

在这里插入图片描述

### AIGC技术试问题 #### 关于AIGC的理解及其应用场景 在对有关AIGC的技术试时,理解其定义和发展阶段至关重要。AIGC标志着从传统的人工智能向更先进形式转变的关键一步,在此过程中机器能够自主创造内容而非仅仅处理已有数据[^2]。 对于不同类型的媒体——文本、图像、声音以及视频——AIGC均展现出巨大潜力。例如,在自然语言处理方,大型语言模型(LLMs)被广泛应用于生成高质量的文章、故事甚至对话响应;而在视觉艺术创作上,则可以通过算法自动生成逼真的绘画作品或设计图案[^1]。 #### LLMs的应用实例和技术细节 当涉及到具体实现方式时,LLMs作为一类特别重要的工具脱颖而出。这类模型经过大量语料库训练后具备强大的泛化能力,能够在接收到特定指令的情况下迅速给出恰当的回答或是创造出新的内容片段。以ChatGPT为例,它不仅限于简单的问答交互,还支持复杂场景下的创意写作任务,如编写剧本、歌词等[^3]。 ```python def generate_text(prompt, model="chatgpt"): """ 使用指定的语言模型根据给定的提示生成文本 参数: prompt (str): 输入的提示字符串 model (str): 所使用的预训练模型名称,默认为'chatgpt' 返回: str: 由模型生成的结果文本 """ pass # 这里省略了实际调用API的具体逻辑 ``` 通过上述函数原型可以看出,在开发基于LLM的内容生成功能时,开发者需要考虑如何有效地构建输入提示(prompt),以便让模型更好地理解和回应用户的意图。 #### 准备技巧与注意事项 为了顺利应对涉及AIGC领域的试挑战,建议候选人提前做好充分准备: - **深入研究目标公司产品线**:了解企业正在探索哪些方向上的创新应用; - **掌握最新研究成果**:关注顶级会议论文发布情况,熟悉前沿技术和理论进展; - **实践项目积累经验**:参与开源社区贡献代码或者独立完成小型实验性项目来增强实战技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值