保姆级手把手使用YOLOv11训练自己数据集(含源代码、网络结构、模型检测和转换 、数据集查找、模型训练)

前言

本教程内含YOLOv11网络结构图+训练教程+推理教程+数据集获取等有关的内容~

项目地址

YOLO11是Ultralytics YOLO系列实时目标检测器的最新迭代版本,它以尖端的准确性、速度和效率重新定义了可能实现的性能。在之前YOLO版本取得的显著进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为各种计算机视觉任务中的通用选择。
Yolo11官方Github链接: Yolo11
在这里插入图片描述

项目内容:

网络模型结构

在这里插入图片描述
在这里插入图片描述

性能测试

官方给出的测试数据:
在这里插入图片描述

在这里插入图片描述

任务描述

以下为YOLO11支持的计算机视觉任务:

  • 目标检测
  • 实例分割
  • 图像分类
  • 姿态估计(关键点检测)
  • 旋转框检测(OBB)
  • 目标跟踪

任务内容

不要担心,看一下官方测试代码,发现跟YOLOv8 几乎一致,只是改了一个名字,可以认为是YOLOv8的魔改升级的最新版本,官方也是这么说的:

  1. 与前代版本相比,YOLOv11的最大亮点在于其更新的模型结构。官方提供的指令显示,对于已经掌握YOLOv8的用户,切换到YOLOv11几乎不需要任何额外的学习,只需根据新的模型名称进行小范围调整。这样极大的便利性使得项目迭代变得从容不迫,开发者可以快速适应新版本,提升相应的应用效果。同时,YOLOv11对老版本模型的兼容性进一步增强,使得用户可在现有训练框架下灵活运用新技术。

  2. 安装YOLOv11的过程相对简单,开发者只需从其GitHub页面下载最新的源码,并按照指南进行模型预测的命令行测试。具体步骤包括运行模型并下载YOLOv11的权重文件,以及将模型导出为ONNX格式,方便在不同平台间使用。这一灵活的方法不仅优化了开发流程,还为后续的集成提供了基石。

在这里插入图片描述

项目运行

yolo predict model=yolo11n.pt source=zidane.jpg

在这里插入图片描述
然后导出成ONNX格式,看一下输入与输出格式:

yolo export model=yolo11n.pt format=onnx

打开Onnx模型的文件,查看网络结构和输入输出大小:
在这里插入图片描述
在这里插入图片描述

模型训练

  1. 免费数据集网站Roboflow,—键导出Voc、coco、Yolo、Csv等格式。
    随便下载了一个数据集用它导出YOLO的数据集,自动给转换成txt的格式,yaml文件也已经配置好了,直接用就可以。

在这里插入图片描述
2. 模型下载,就是在上面的链接,即训练代码链接,下载代码即可

git clone https://github.com/ultralytics/ultralytics.git 

在这里插入图片描述
3. 训练代码,train.py如下:

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
 
if __name__ == '__main__':
    model = YOLO(r'xxx\yolo\yolov11\ultralytics-main\datasets\yolo11.yaml') # 地址改成自己的
    model.train(data=r'xxx\yolo\yolov11\ultralytics-main\datasets\data.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                single_cls=False,  # 是否是单类别检测
                batch=8,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD',
                amp=True,
                project='runs/train',
                name='exp',
                )

可以说,只要你会YOLOv8从训练到部署,切换到YOLOv11,只需要改个几个数字就好啦!其它基本不用管。

参考链接:

  1. link
  2. link
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值