win11的ubuntu子系统 WSL2 下配置cuda、cudnn、GPU pytorch环境

1.安装、卸载Ubuntu子系统

安装:https://zhuanlan.zhihu.com/p/76032647
后面的图形化界面,可以不用安装。可以使用ssh:
参考:https://www.jianshu.com/p/79b2a7916cfd
【注意】:在每次用子系统时,用

sudo service ssh restart

重启SSH服务。

卸载:https://blog.csdn.net/zhezhebie/article/details/102646909

子系统安装

2.安装cuda、cudnn环境

参考:https://blog.csdn.net/weixin_44029053/article/details/119480776

2.1安装cuda on wsl驱动到宿主Windows系统

官网:https://developer.nvidia.com/cuda/wsl/download
在这里插入图片描述

选第一个【GEFORCE DRIVER】安装,因为你的显卡一般是GEFORCE游戏显卡。

2.2安装cuda sdk

换源安装cuda-toolkit:

sudo apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
sudo sh -c ‘echo “deb https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/” > /etc/apt/sources.list.d/cuda.list’
sudo apt-get install -y cuda-toolkit-11-1

2.3设置cuda环境变量

sudo vi ~/.bashrc

在这里插入图片描述
如果出现,按 “E”
用vim的方式,进入.bashrc文件
按 “i” 进去插入模式,在文件末尾加上:

export PATH=/usr/local/cuda-11.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

按 “ESC” 推出插入模式,“:wq” 保存并退出vim。
输出如下命令,立即生效。

source ~/.bashrc

如果命令没有找到,可以关闭会话,从新打开子系统会话。

2.4更新库

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

2.5查看cuda是否安装成功

nvcc -V

如果还是没有显示版本,退出会话,重新打开Ubuntu子系统,再试一下。
显示下面的内容,表示安装成功:
在这里插入图片描述
如果还是不行,那就重新安装cuda,把2.2的步骤换为如下:
备选方案安装sdk,默认cuda 10.1:

sudo apt install nvidia-cuda-toolkit

2.6安装cudnn

官网:https://developer.nvidia.com/rdp/cudnn-archive
安装cudnn的时候也需要登录Nvidia账号,我下载的如下版本:

在这里插入图片描述
我将文件保存到:

D:\DW

注意,这个路径跟下面的操作有关,(这里的存放路径,原则上必须在子系统里下载安装,但是实际上,和你之前设置的有关):在这里插入图片描述

cd /mnt/d/DW

这里的mnt表示子系统挂靠的位置,d表示d盘,DW表示文件夹,根据上一步的路径,自己更改:
在这里插入图片描述
在子系统命令行里安装:

ar -zxvf cudnn-11.2-linux-x64-v8.1.1.33.tgz
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.1/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.1/include/

为所有用户设置读取权限:

sudo chmod a+r /usr/local/cuda-11.1/include/cudnn.h
sudo chmod a+r /usr/local/cuda-11.1/lib64/libcudnn*

2.7验证cuda是否安装成功

cd /usr/local/cuda/samples/4_Finance/BlackScholes
sudo make

耐心等待编译…
完事后再输入:

./BlackScholes

出现Test passed说明安装成功。

2.2卸载cuda

如果安装不成功,或者不是自己需要的版本,可以卸载之后重新安装:
参考:https://blog.csdn.net/qq_42518956/article/details/108358254
低版本cuda:

 
 cd  /usr/local/cuda/bin
 sudo ./uninstall_cuda_x.x.pl 
 或
 sudo ./cuda-uninstaller

高版本的cuda没有这个文件(拿cuda 11.1举例)所以:

sudo apt-get remove cuda
sudo apt autoremove 
sudo apt-get remove cuda*

然后切换到CUDA所在目录:

cd /usr/local/

输入命令:

sudo dpkg -l |grep cuda

可以看到,还有很多cuda11.1的包,将这些包逐一删除:

sudo dpkg -P cuda-toolkit-11-0(包名) 

一个一个对应删除,因为系统不让使用cuda*直接全部删除,这些都完事,就可以正常安装了
在这里插入图片描述

3.安装Miniconda、pytorch环境

按照这个博客:https://blog.csdn.net/weixin_44029053/article/details/119480776

4.测试

python
import torch
x=torch.rand(5,3)
print(x)
print(torch.cuda.is_available()) 

如果显示True,表示成功安装GPU版本pytorch

### 如何在 Windows 11 上通过 WSL2 安装配置 PyTorch #### 准备工作 为了确保顺利安装,需确认 Windows 11 已更新至最新版本,并启用了虚拟机平台功能以及 WSL2 功能。这一步骤至关重要,因为后续操作依赖于此环境设置。 #### 步骤说明 #### 启用 WSL2 和 Linux 子系统 执行 PowerShell 命令来启用必要的特性: ```powershell wsl --install ``` 此命令会自动完成多项任务,包括下载适用于 Linux 的 Ubuntu 发行版并将其设为默认使用的发行版,同时也会将 WSL 版本升级到 WSL2[^1]。 #### 设置 GPU 加速支持 对于希望利用 NVIDIA 显卡加速计算性能的情况,需要额外安装 NVIDIA CUDA Toolkit for WSL2。可以通过访问官方页面获取最新的安装指南链接,按照指引逐步完成驱动程序与工具包的安装过程。 #### 安装 Python 环境 进入已安装好的 Linux 终端环境中,推荐采用 Anaconda 或 Miniconda 来管理 Python 虚拟环境及其依赖库文件。创建一个新的 conda 环境用于隔离不同项目之间的软件冲突问题。 ```bash # 如果尚未安装 miniconda, 则先安装miniconda wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && \ bash ~/miniconda.sh -b -p $HOME/miniconda && \ rm -rf ~/miniconda.sh source ~/.bashrc # 创建新的 conda 环境名为 pytorch_env 并激活它 conda create --name pytorch_env python=3.9 -y conda activate pytorch_env ``` #### 安装 PyTorch 库 根据个人需求选择合适的 PyTorch 安装方式,通常建议从官方网站获取对应于当前系统的稳定版本指令进行 pip 或者 conda 方式的安装。如果已经设置了 GPU 支持,则应挑选带有 cuda 标签的二进制包以充分利用硬件资源。 ```bash # 对于 CPU-only 用户来说可以这样安装 pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu # 若拥有兼容 Nvidia GPU 设备则可考虑如下命令(假设使用的是CUDA 11.7) pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 以上就是整个流程的大致介绍,具体细节可能会因时间推移而有所变化,请参照官方文档获得最准确的信息。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值