--------------------------------------- 更新ubnutu基础环境 ---------------------------------------
apt升级
sudo apt update
sudo apt upgrade
sudo apt-get update
sudo apt-get upgrade
JAVA
sudo apt install openjdk-8-jdk
sudo apt install openjdk-11-jdk
HelloWorld.java
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");
}
}
解释性运行文件
java HelloWorld.java
编译性运行文件
javac HelloWorld.java
java HelloWorld
java -version
安装 gcc,g++
sudo apt install gcc g++ gdb cmake
pip升级
sudo apt install python3-pip
python3 -m pip install --upgrade pip
卸载pip
sudo apt-get remove python3-pip
cd /mnt/c/Users/29038/Downloads/
--------------------------------------- 安装cuda ---------------------------------------
wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
sudo sh cuda_11.1.0_455.23.05_linux.run
--------------------------------------- 安装cudnn ---------------------------------------
解压
sudo tar zxvf cudnn-11.1-linux-x64-v8.0.4.30.tgz
cudnn 复制
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
--------------------------------------- cuda,cudnn 添加环境变量 / nvidia-smi, nvcc -V 添加环境变量---------------------------------------
打开 .bashrc 文本
vim ~/.bashrc
文本最后添加
echo "export PATH=$PATH:/usr/local/cuda/bin" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64" >> ~/.bashrc
echo "export CUDA_HOME=$CUDA_HOME:/usr/local/cuda" >> ~/.bashrc
export PATH=/usr/local/cuda-11.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-11.1
更新文本/更新环境变量
source ~/.bashrc
解决缺少libcusolver.so.10文件问题
sudo cp /usr/local/cuda/lib64/libcusolver.so.11 /usr/local/cuda/lib64/libcusolver.so.10
--------------------------------------- 安装tensorflow, pytorch ---------------------------------------
tensorflow 安装
pip3 install tensorflow==2.4.1
tensorflow 测试GPU是否可用
python3
import tensorflow as tf
print(tf.test.is_gpu_available())
pytorch 安装
pip3 install torch1.8.1+cu111 torchvision0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pytorch 测试GPU是否可用
python3
import torch
print(torch.cuda.is_available())
print(torch.Tensor(5, 3).cuda())
--------------------------------------- 安装anaconda3/miniconda3 ---------------------------------------
vim ~/.bashrc
export PATH=
P
A
T
H
:
/
h
o
m
e
/
z
h
u
y
e
t
u
o
/
m
i
n
i
c
o
n
d
a
3
/
b
i
n
e
x
p
o
r
t
P
A
T
H
=
PATH:/home/zhuyetuo/miniconda3/bin export PATH=
PATH:/home/zhuyetuo/miniconda3/binexportPATH=PATH:/home/zhuyetuo/anaconda3/bin
设置jupyter密码
jupyter notebook passwd
--------------------------------------- 安装docker ---------------------------------------
--------------------------------------- 安装nvidia-docker ---------------------------------------
apt-get install gcc-7 g+±7
sudo apt install gcc make g++
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 100
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 50
python3
import tensorflow as tf
import os
os.environ[‘TF_CPP_MIN_LOG_LEVEL’] = ‘2’ # 不显示等级2以下的提示信息
print(‘GPU’, tf.test.is_gpu_available())
a = tf.constant(2.0)
b = tf.constant(4.0)
print(a + b)
curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun
curl -sSL https://get.daocloud.io/docker | sh
手动安装docker
sudo apt-get remove docker docker-engine docker.io containerd runc
sudo apt-get update
sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/gpg | sudo apt-key add -
sudo apt-key fingerprint 0EBFCD88
sudo add-apt-repository “deb [arch=amd64] https://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/ $(lsb_release -cs) stable”
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
安装指定版本
sudo apt-get install docker-ce=<VERSION_STRING> docker-ce-cli=<VERSION_STRING> containerd.io
apt-cache madison docker-ce
sudo service docker start
sudo docker run hello-world
使用 Docker 作为非 root 用户
sudo usermod -aG docker zhuyetuo
卸载 docker
sudo apt-get purge docker-ce
删除镜像、容器、配置文件等内容
sudo rm -rf /var/lib/docker