给你a和b,让你求出X和Y,使得X + Y = a lcm(x,y) = b
思路:看数据范围肯定不能进行暴力枚举了!
令gcd(x,y) = g;
那么
g * k1 = x;
g * k2 = y;
因为g 是最大公约数,那么k1与k2 必互质!
=> g*k1*k2 = b
=> g*k1 + g * k2 = a;
所以k1 * k2 = b / g;
k1 + k2 = a/g;
因为k1与k2 互质!
所以k1 * k2 和 k1 + k2 也一定互质(一个新学的知识点= = )
所以a/g 与b/g也互质!
那么g 就是gcd(a,b);
所以我们得出一个结论: gcd(x,y) == gcd(a,b);;
X*Y=LCM(X,Y)*GCD(X,Y)
于是,我们不妨假设GCD(X,Y)=k,那么我们可以知道
假设X≥Y,则
这个方程组还是好解的
无解的情况有如下三种(满足任意一种都是无解):
#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
long long gcd(long long a,long long b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
int main()
{
long long a,b,k,d,X,Y,s;
while(~scanf("%lld%lld",&a,&b))
{
long long k=gcd(a,b);
long long d=a*a-4*b*k;
if(d<0)
{
printf("No Solution\n");
continue;
}
long long s=(long long)sqrt(1.0*d);
if(s*s!=d||(a+s)%2)
{
printf("No Solution\n");
continue;
}
X=(s+a)/2;
Y=a-X;
if(X>Y)
swap(X,Y);
printf("%lld %lld\n",X,Y);
}
return 0;
}