HDU5974 Simple Math Problem



给你a和b,让你求出X和Y,使得X + Y = a lcm(x,y) = b 

思路: 
看数据范围肯定不能进行暴力枚举了! 
令gcd(x,y) = g; 
那么 
g * k1 = x; 
g * k2 = y; 
因为g 是最大公约数,那么k1与k2 必互质! 
=> g*k1*k2 = b 
=> g*k1 + g * k2 = a; 
所以k1 * k2 = b / g; 
k1 + k2 = a/g; 
因为k1与k2 互质! 
所以k1 * k2 和 k1 + k2 也一定互质(一个新学的知识点= = ) 
所以a/g 与b/g也互质! 
那么g 就是gcd(a,b); 
所以我们得出一个结论: gcd(x,y) == gcd(a,b);; 
X*Y=LCM(X,Y)*GCD(X,Y) 
于是,我们不妨假设GCD(X,Y)=k,那么我们可以知道 
这里写图片描述  
这里写图片描述  
假设X≥Y,则 
这里写图片描述  
这个方程组还是好解的 
无解的情况有如下三种(满足任意一种都是无解): 

这里写图片描述 

#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
long long gcd(long long a,long long b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}
int main()
{
    long long a,b,k,d,X,Y,s;
    while(~scanf("%lld%lld",&a,&b))
    {
        long long k=gcd(a,b);
        long long d=a*a-4*b*k;
        if(d<0)
        {
            printf("No Solution\n");
            continue;
        }
        long long s=(long long)sqrt(1.0*d);
        if(s*s!=d||(a+s)%2)
        {
            printf("No Solution\n");
            continue;
        }
        X=(s+a)/2;
        Y=a-X;
        if(X>Y)
            swap(X,Y);
        printf("%lld %lld\n",X,Y);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值