两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
这道题运用了扩展欧几里得
我们设两只青蛙跳了k次后见面青蛙A的坐标为x+mk,青蛙B的坐标为y+nk
(x+mk)-(y+nk)=p*l
p是青蛙A跳的圈数和青蛙B跳的圈数之差。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
long long ex(long long a,long long b,long long &c,long long &d)
{
if(b==0)
{
c=1;
d=0;
return a;
}
long long k=ex(b,a%b,c,d);
long long t=d;
d=c-(a/b)*d;
c=t;
return k;
}
int main()
{
long long x,y,n,m,l;
while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
{
long long a=0,b=0;
long long r;
r=ex(n-m,l,a,b);
if((x-y)%r!=0||n==m)
printf("Impossible\n");
else
{
long long s;
s=l/r;
a=a*((x-y)/r);
a=(a%s+s)%s;
printf("%lld\n",a);
}
}
return 0;
}