神经网络之CNN对数据变换的敏感性

同变性

T:变换,R:算子,x:变量
R(T(x))=T(R(x))

不变性(特征学习中我们想要的)

R(T(x))=R(x)

CNN中的等变性背后的本质

同变性: 体现在 feature map 部分;
eg:图像翻转后,同样的核(局部连接+权值共享) 作用满足同变性;
不变性: 体现在全连接层;
eg:猫图像翻转后,还是猫这一类;

没有“旋转不变性”,只能通过data argumentation这种方式(人为地对样本做 镜像、旋转、缩放等操作)让CNN自己去学习旋转不变性。
“尺度不变性”,由类似于SSD这种对不同尺寸(分辨率)的feature map作相同的处理得到的。CNN本身并不具备尺度不变性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值