同变性
T:变换,R:算子,x:变量
R(T(x))=T(R(x))
不变性(特征学习中我们想要的)
R(T(x))=R(x)
CNN中的等变性背后的本质
同变性: 体现在 feature map 部分;
eg:图像翻转后,同样的核(局部连接+权值共享) 作用满足同变性;
不变性: 体现在全连接层;
eg:猫图像翻转后,还是猫这一类;
没有“旋转不变性”,只能通过data argumentation这种方式(人为地对样本做 镜像、旋转、缩放等操作)让CNN自己去学习旋转不变性。
“尺度不变性”,由类似于SSD这种对不同尺寸(分辨率)的feature map作相同的处理得到的。CNN本身并不具备尺度不变性。