IGARSS2019-项目实战总结-keras

0.写在前边

这算得上是真正意义上接触的第一个深度学习项目了。果真在既没有经验,又没有实力的情况下,项目被搞得一团糟。实践出真知,赶紧总结吸取教训!!!


1.项目流程

1.1数据流

(1)超参传递
1)通过.py传递
eg: params.py中存储超参[OPTIMIZER = ‘Adam’]的值;则在新的.py文件中导入[import params],便可通过 params.OPTIMIZER获得超参的值;
2)通过sys传递外部参数
(2)数据读取过程
1)获取图像名称列表:glob;
2)生成batches索引列表;
3)生成(图像,标签)batch:i加载数据;ii数据预处理[数据增广、归一化、标签转换等];

实用代码

数据增广

from albumentations import (
    PadIfNeeded,
    HorizontalFlip,    # 
    VerticalFlip,   # 
    CenterCrop,    
    Crop,
    Compose,    #
    Transpose,    #
    RandomRotate90,    #
    ElasticTransform,
    GridDistortion, 
    OpticalDistortion,
    RandomSizedCrop,
    OneOf,
    CLAHE,
    RandomContrast,
    RandomGamma,
    RandomBrightness
)
def image_augmentation(currImg, labelMask):
    aug = Compose([VerticalFlip(p=0.5),              
            RandomRotate90(p=0.5),HorizontalFlip(p=0.5),Transpose(p=0.5)])
    augmented = aug(image=currImg, mask=labelMask)
    imageMedium = augmented['image']
    labelMedium = augmented['mask']
    return imageMedium,labelMedium

RGB图像归一化:从[0-255]到[0-1]

from keras.applications import imagenet_utils
imgBatch  = imagenet_utils.preprocess_input(imgBatch)
imgBatch = imgBatch / 255.0

1.2模型&代码

(通用定义)

from keras.layers import Input
# 定义模型所需要的 [输入的张量(占位?),张量的形状]
input_tensor = Input(shape=(imgSz[0],imgSz[1],self.params.NUM_CHANNELS))
input_shape = (imgSz[0],imgSz[1],self.params.NUM_CHANNELS)
# 模型逐层定义
  # backbone
  # 自定义
  # model = Model(input, x)
  # 损失函数
  # 优化算法
  # 编译
  # return model 
#

后处理

语义分割

pred = np.argmax(pred, axis=2).astype('uint8')

高度预测

pred = convert_labels(pred, self.params, toLasStandard=True)

最后

pred = pred[:,:,0]
tifffile.imsave(os.path.join(self.params.OUTPUT_DIR, outName), pred, compress=6)

训练&推理

推理阶段:模型不需要损失函数和优化算法;
对数据的预处理和后处理是基本相同的;


2.模型&代码(基模差定义)

2.0 模型基础

特征交互的方式:
(1)级联:通道数变为原来的两倍
(2)级联再卷积:卷积的目的是降低通道数与原来保持一致
(3)加:逐元素相加 ----线性和、加权和
(4)乘:逐元素相乘
金字塔的表现方式:
(1)图像金字塔:图像resize到不同尺寸,基于不同尺寸的图像做预测;
(2)特征金字塔:图像–特征(不同尺寸的特征),基于不同尺寸的特征做预测;
(3)FPN:金字塔特征+顶层特征与低层特征融合;
resnet的特点: 包含残差块,即上一块的输出与下一层的输出融合

2.1 UNet

encoder-decoder结构
四个卷积块 & 四个上采样块 + skip connection

2.2 FPN

特征金字塔 预测

2.3 LinkNet

四个卷积块 & 四个上采样块 + skip connection
编码时resnet作为backbone

2.4 PSPNet

金字塔池化模块:不同尺度的池化得到不同尺度的特征,再上采样到原来的大小,进行级联;


3.小细节

  • 命名: 项目、文件夹、文件、类、函数、方法、变量等,任何需要命名的东西,做到简洁、见名知意
  • 版本控制: 不同版本间的名称做到有序有意
    – 版本控制的方法:外隔离、内隔离;(源码多是外隔离[.py],师兄多是内隔离[class])
  • 功能封装: (1)程序模块化:相似的功能模块集成(函数、类、包);(2)使用高级模块化的语句:即用尽可能少的、高效的代码完成需要的功能;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值