KL散度&交叉熵&信息熵&不确定性信息度量

0.起源

物理学中的热力学 :度量分子在物理空间中的混乱程度;

1.信息熵

信息熵: 度量信息量的多少;
以离散信息为例
离散符号:x1,x2,…,xn
信息中各符号出现的概率:p1,p2,…,pn
信息的不确定性函数: f: p—f(p);
p越大,信息的不确定性越小,因此f是一个 减函数
假设前提: 各符号的出现是相互独立的(与实际不符
则:f(p1,p2)=f(p1)+f(p2),即f具有可加性

满足 减函数和可加性不确定性函数f 定义为:
在这里插入图片描述
信息熵: 信息的平均不确定性
在这里插入图片描述

2.交叉熵

主要用于度量两个概率分布间的差异性信息。
P–X 真实分布 ; Q–Y拟合分布
在这里插入图片描述
在这里插入图片描述

3.KL散度(相对熵)

相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量 。在信息论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值 。
相对熵是一些优化算法,例如最大期望算法(Expectation-Maximization algorithm, EM)的损失函数。此时参与计算的一个概率分布为真实分布,另一个为拟合分布,相对熵表示使用拟合分布拟合真实分布时产生的信息损耗
P–X 真实分布 ; Q–Y拟合分布
在这里插入图片描述
在这里插入图片描述
特点: 非负性;分布 越相似,越接近0

4.互信息

一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不确定性。

在这里插入图片描述
**特点:**非负性;对称性;度量两个对象之间的相互性,对象 越相似,互信息越大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值