夹逼定理简介

极限知识

  • lim ⁡ x → 0 sin ⁡ x x = 1 , lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\rightarrow 0} \frac{\sin x}{x}=1,\lim\limits_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=e x0limxsinx=1,x0lim(1+x)x1=e
  • x → 0 x\rightarrow 0 x0
    (1) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ l n ( 1 + x ) ∼ e x − 1 x\sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim ln(1+x) \sim e^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1
    (2) 1 − cos ⁡ x ∼ 1 2 x 2 1 − c o s a x ∼ a 2 x 2 1-\cos x \sim \frac12x^2 \quad 1-cos^a x \sim \frac a2 x^2 1cosx21x21cosax2ax2
    (3) 1 + x − 1 ∼ 1 2 x ( 1 + x ) a − 1 ∼ a x \sqrt{1+x}-1\sim \frac12x \quad (1+x)^a-1 \sim ax 1+x 121x(1+x)a1ax

夹逼定理

若在 x 0 x_0 x0的邻域内,恒有 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\leq f(x)\leq h(x) g(x)f(x)h(x),且 lim ⁡ x → x 0 g ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim\limits_{x\rightarrow x_0} g(x)=\lim\limits_{x\rightarrow x_0}h(x)=A xx0limg(x)=xx0limh(x)=A,则 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\rightarrow x_0}f(x)=A xx0limf(x)=A

例1:

lim ⁡ x → ∞ ( 1 n 2 + 1 + 2 n 2 + 2 + ⋯ + n n 2 + n ) \lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+1}+\dfrac{2}{n^2+2}+\dots+\dfrac{n}{n^2+n}) xlim(n2+11+n2+22++n2+nn)

解: ∵ lim ⁡ x → ∞ ( 1 n 2 + n + 2 n 2 + n + ⋯ + n n 2 + n ) \because \lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+n}+\dfrac{2}{n^2+n}+\dots+\dfrac{n}{n^2+n}) xlim(n2+n1+n2+n2++n2+nn)

≤ lim ⁡ x → ∞ ( 1 n 2 + 1 + 2 n 2 + 2 + ⋯ + n n 2 + n ) \qquad \leq \lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+1}+\dfrac{2}{n^2+2}+\dots+\dfrac{n}{n^2+n}) xlim(n2+11+n2+22++n2+nn)

≤ lim ⁡ x → ∞ ( 1 n 2 + 1 + 2 n 2 + 1 + ⋯ + n n 2 + 1 ) \qquad \leq\lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+1}+\dfrac{2}{n^2+1}+\dots+\dfrac{n}{n^2+1}) xlim(n2+11+n2+12++n2+1n)

左侧: lim ⁡ x → ∞ ( 1 n 2 + n + 2 n 2 + n + ⋯ + n n 2 + n ) = lim ⁡ x → ∞ n 2 + n 2 n 2 + n = 1 2 \lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+n}+\dfrac{2}{n^2+n}+\dots+\dfrac{n}{n^2+n})=\lim\limits_{x\rightarrow \infty}\dfrac{\frac{n^2+n}{2}}{n^2+n}=\dfrac12 xlim(n2+n1+n2+n2++n2+nn)=xlimn2+n2n2+n=21

右侧: lim ⁡ x → ∞ ( 1 n 2 + 1 + 2 n 2 + 1 + ⋯ + n n 2 + 1 ) = lim ⁡ x → ∞ n 2 + n 2 n 2 + 1 = 1 2 \lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+1}+\dfrac{2}{n^2+1}+\dots+\dfrac{n}{n^2+1})=\lim\limits_{x\rightarrow \infty}\dfrac{\frac{n^2+n}{2}}{n^2+1}=\dfrac12 xlim(n2+11+n2+12++n2+1n)=xlimn2+12n2+n=21

∴ lim ⁡ x → ∞ ( 1 n 2 + 1 + 2 n 2 + 2 + ⋯ + n n 2 + n ) = 1 2 \therefore\lim\limits_{x\rightarrow \infty}(\dfrac{1}{n^2+1}+\dfrac{2}{n^2+2}+\dots+\dfrac{n}{n^2+n})=\dfrac12 xlim(n2+11+n2+22++n2+nn)=21

例2:

lim ⁡ x → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) \lim\limits_{x\rightarrow \infty}(\dfrac{1}{\sqrt{n^2+1}}+\dfrac{1}{\sqrt{n^2+2}}+\dots+\dfrac{1}{\sqrt{n^2+n}}) xlim(n2+1 1+n2+2 1++n2+n 1)

解: ∵ n n 2 + n ≤ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) ≤ n n 2 + 1 \because\dfrac{n}{\sqrt{n^2+n}}\leq (\dfrac{1}{\sqrt{n^2+1}}+\dfrac{1}{\sqrt{n^2+2}}+\dots+\dfrac{1}{\sqrt{n^2+n}})\leq \dfrac{n}{\sqrt{n^2+1}} n2+n n(n2+1 1+n2+2 1++n2+n 1)n2+1 n

左侧: lim ⁡ x → ∞ n n 2 + n = lim ⁡ x → ∞ 1 1 + 1 n = 1 \lim\limits_{x\rightarrow \infty}\dfrac{n}{\sqrt{n^2+n}}=\lim\limits_{x\rightarrow \infty}\dfrac{1}{\sqrt{1+\dfrac{1}{n}}}=1 xlimn2+n n=xlim1+n1 1=1

右侧: lim ⁡ x → ∞ n n 2 + 1 = lim ⁡ x → ∞ 1 1 + 1 n 2 = 1 \lim\limits_{x\rightarrow \infty}\dfrac{n}{\sqrt{n^2+1}}=\lim\limits_{x\rightarrow \infty}\dfrac{1}{\sqrt{1+\dfrac{1}{n^2}}}=1 xlimn2+1 n=xlim1+n21 1=1

∴ lim ⁡ x → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = 1 \therefore \lim\limits_{x\rightarrow \infty}(\dfrac{1}{\sqrt{n^2+1}}+\dfrac{1}{\sqrt{n^2+2}}+\dots+\dfrac{1}{\sqrt{n^2+n}})=1 xlim(n2+1 1+n2+2 1++n2+n 1)=1

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值