高等数学学习01-夹逼准则

一、夹逼准则的核心内容

1. 数列的夹逼准则

条件
若存在正整数 N,当 n>N 时,有:an​≤cn​≤bn​
且 limn→∞​an​=limn→∞​bn​=L,
则 limn→∞​cn​=L。

关键

  • 构造上下界:通过放缩法找到 an​ 和 bn​,使其极限相同。
  • 常见场景
    • n 项和的极限(如 ∑k=1n​n2+k1​)。
    • 含阶乘或指数的数列(如 limn→∞​nnn!​)。
2. 函数的夹逼准则

条件
若存在 δ>0,当 0<∣x−a∣<δ 时,有:f(x)≤g(x)≤h(x)
且 limx→a​f(x)=limx→a​h(x)=L,
则 limx→a​g(x)=L。

关键

  • 局部放缩:利用三角函数、指数函数等的有界性构造夹逼。
    • 例如:−∣x∣≤sinx≤∣x∣(当 x→0 时)。

二、考研数学二高频考点

1. n 项和的极限

典型例题
求 limn→∞​(n2+11​+n2+21​+⋯+n2+n1​)。

步骤

  1. 下界:所有项中分母最大的项最小,故n2+nn​≤∑k=1n​n2+k1​≤n2+1n​.
  2. 求极限:limn→∞​n2+nn​=limn→∞​n+11​=0,limn→∞​n2+1n​=0.
  3. 结论:原极限为 0。
2. 含参数的数列极限

典型例题
求 limn→∞​n1+2n+3n​。

步骤

  1. 放缩:3=n3n​≤n1+2n+3n​≤n3⋅3n​=3⋅n3​.
  2. 求极限:limn→∞​3⋅n3​=3⋅1=3.
  3. 结论:原极限为 3。
3. 函数极限中的夹逼

典型例题
求 limx→0​x2sinx1​。

步骤

  1. 放缩:−x2≤x2sinx1​≤x2.
  2. 求极限:limx→0​−x2=0,limx→0​x2=0.
  3. 结论:原极限为 0。

三、易错点与技巧

  1. 构造夹逼的技巧

    • 分式数列:统一分母为最大或最小值。
    • 指数 / 阶乘:提取主导项(如 3n 主导 1+2n+3n)。
    • 三角函数:利用 ∣sinx∣≤1 或 ∣cosx∣≤1。
  2. 避免过度放缩

    • 例如,求 limn→∞​nnn!​,若错误地将 n!≤nn,则无法得到有用的下界。正确方法是用 n!≤n⋅nn−1=nn,但需结合其他放缩(如斯特林公式)。
  3. 结合其他方法

    • 夹逼准则常与定积分定义、洛必达法则结合使用。例如,n 项和的极限可先尝试夹逼,若失败再考虑定积分。

四、考研真题链接

  • 2020 年数学二:求 limn→∞​∑k=1n​n2+kk​。
    提示:用夹逼准则,上下界分别为 n2+nn(n+1)/2​ 和 n2+1n(n+1)/2​。

  • 2018 年数学二:求 limn→∞​n1+21​+⋯+n1​​。
    提示:利用 1≤n1+21​+⋯+n1​​≤nn​。

五、总结

  • 适用场景:复杂数列 / 函数极限,无法直接计算时。
  • 关键步骤
    1. 观察结构,确定主导项。
    2. 通过不等式放缩构造上下界。
    3. 验证上下界极限相同。
  • 注意:夹逼准则需保证上下界的极限存在且相等,否则可能失效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值