一、夹逼准则的核心内容
1. 数列的夹逼准则
条件:
若存在正整数 N,当 n>N 时,有:an≤cn≤bn
且 limn→∞an=limn→∞bn=L,
则 limn→∞cn=L。
关键:
- 构造上下界:通过放缩法找到 an 和 bn,使其极限相同。
- 常见场景:
- n 项和的极限(如 ∑k=1nn2+k1)。
- 含阶乘或指数的数列(如 limn→∞nnn!)。
2. 函数的夹逼准则
条件:
若存在 δ>0,当 0<∣x−a∣<δ 时,有:f(x)≤g(x)≤h(x)
且 limx→af(x)=limx→ah(x)=L,
则 limx→ag(x)=L。
关键:
- 局部放缩:利用三角函数、指数函数等的有界性构造夹逼。
- 例如:−∣x∣≤sinx≤∣x∣(当 x→0 时)。
二、考研数学二高频考点
1. n 项和的极限
典型例题:
求 limn→∞(n2+11+n2+21+⋯+n2+n1)。
步骤:
- 下界:所有项中分母最大的项最小,故n2+nn≤∑k=1nn2+k1≤n2+1n.
- 求极限:limn→∞n2+nn=limn→∞n+11=0,limn→∞n2+1n=0.
- 结论:原极限为 0。
2. 含参数的数列极限
典型例题:
求 limn→∞n1+2n+3n。
步骤:
- 放缩:3=n3n≤n1+2n+3n≤n3⋅3n=3⋅n3.
- 求极限:limn→∞3⋅n3=3⋅1=3.
- 结论:原极限为 3。
3. 函数极限中的夹逼
典型例题:
求 limx→0x2sinx1。
步骤:
- 放缩:−x2≤x2sinx1≤x2.
- 求极限:limx→0−x2=0,limx→0x2=0.
- 结论:原极限为 0。
三、易错点与技巧
-
构造夹逼的技巧:
- 分式数列:统一分母为最大或最小值。
- 指数 / 阶乘:提取主导项(如 3n 主导 1+2n+3n)。
- 三角函数:利用 ∣sinx∣≤1 或 ∣cosx∣≤1。
-
避免过度放缩:
- 例如,求 limn→∞nnn!,若错误地将 n!≤nn,则无法得到有用的下界。正确方法是用 n!≤n⋅nn−1=nn,但需结合其他放缩(如斯特林公式)。
-
结合其他方法:
- 夹逼准则常与定积分定义、洛必达法则结合使用。例如,n 项和的极限可先尝试夹逼,若失败再考虑定积分。
四、考研真题链接
-
2020 年数学二:求 limn→∞∑k=1nn2+kk。
提示:用夹逼准则,上下界分别为 n2+nn(n+1)/2 和 n2+1n(n+1)/2。 -
2018 年数学二:求 limn→∞n1+21+⋯+n1。
提示:利用 1≤n1+21+⋯+n1≤nn。
五、总结
- 适用场景:复杂数列 / 函数极限,无法直接计算时。
- 关键步骤:
- 观察结构,确定主导项。
- 通过不等式放缩构造上下界。
- 验证上下界极限相同。
- 注意:夹逼准则需保证上下界的极限存在且相等,否则可能失效。