数学基础 -- 共轭表达式

共轭表达式

在数学中,共轭表达式指的是一种特殊的代数表达式,通常用于消去分母中的根号或简化复杂的代数表达式。共轭表达式最常用于含有平方根的分数中,通过与分母的共轭进行乘法操作,能够有效地将分母中的根号消去。

具体来说,若有一个包含平方根的代数表达式 a + b c a + b\sqrt{c} a+bc ,其共轭表达式为 a − b c a - b\sqrt{c} abc 。通过将表达式与其共轭相乘,可以消去其中的平方根。

示例

假设我们有一个表达式:

1 3 + 2 5 \frac{1}{3 + 2\sqrt{5}} 3+25 1

要使分母中的根号消去,我们乘以分母的共轭:

1 3 + 2 5 × 3 − 2 5 3 − 2 5 = 3 − 2 5 ( 3 + 2 5 ) ( 3 − 2 5 ) \frac{1}{3 + 2\sqrt{5}} \times \frac{3 - 2\sqrt{5}}{3 - 2\sqrt{5}} = \frac{3 - 2\sqrt{5}}{(3 + 2\sqrt{5})(3 - 2\sqrt{5})} 3+25 1×325 325 =(3+25 )(325 )325

计算分母:

( 3 + 2 5 ) ( 3 − 2 5 ) = 3 2 − ( 2 5 ) 2 = 9 − 4 ⋅ 5 = 9 − 20 = − 11 (3 + 2\sqrt{5})(3 - 2\sqrt{5}) = 3^2 - (2\sqrt{5})^2 = 9 - 4 \cdot 5 = 9 - 20 = -11 (3+25 )(325 )=32(25 )2=945=920=11

因此,表达式简化为:

3 − 2 5 − 11 = − 3 − 2 5 11 \frac{3 - 2\sqrt{5}}{-11} = -\frac{3 - 2\sqrt{5}}{11} 11325 =11325

使用共轭表达式的步骤

  1. 找到分母的共轭表达式。
  2. 用该共轭表达式同时乘以分子和分母。
  3. 简化分母,通常利用平方差公式。
  4. 简化最终的表达式。

通过使用共轭表达式,可以将含有根号的分数变得更加简洁和易于处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值