共轭表达式
在数学中,共轭表达式指的是一种特殊的代数表达式,通常用于消去分母中的根号或简化复杂的代数表达式。共轭表达式最常用于含有平方根的分数中,通过与分母的共轭进行乘法操作,能够有效地将分母中的根号消去。
具体来说,若有一个包含平方根的代数表达式 a + b c a + b\sqrt{c} a+bc,其共轭表达式为 a − b c a - b\sqrt{c} a−bc。通过将表达式与其共轭相乘,可以消去其中的平方根。
示例
假设我们有一个表达式:
1 3 + 2 5 \frac{1}{3 + 2\sqrt{5}} 3+251
要使分母中的根号消去,我们乘以分母的共轭:
1 3 + 2 5 × 3 − 2 5 3 − 2 5 = 3 − 2 5 ( 3 + 2 5 ) ( 3 − 2 5 ) \frac{1}{3 + 2\sqrt{5}} \times \frac{3 - 2\sqrt{5}}{3 - 2\sqrt{5}} = \frac{3 - 2\sqrt{5}}{(3 + 2\sqrt{5})(3 - 2\sqrt{5})} 3+251×3−253−25=(3+25)(3−25)3−25
计算分母:
( 3 + 2 5 ) ( 3 − 2 5 ) = 3 2 − ( 2 5 ) 2 = 9 − 4 ⋅ 5 = 9 − 20 = − 11 (3 + 2\sqrt{5})(3 - 2\sqrt{5}) = 3^2 - (2\sqrt{5})^2 = 9 - 4 \cdot 5 = 9 - 20 = -11 (3+25)(3−25)=32−(25)2=9−4⋅5=9−20=−11
因此,表达式简化为:
3 − 2 5 − 11 = − 3 − 2 5 11 \frac{3 - 2\sqrt{5}}{-11} = -\frac{3 - 2\sqrt{5}}{11} −113−25=−113−25
使用共轭表达式的步骤
- 找到分母的共轭表达式。
- 用该共轭表达式同时乘以分子和分母。
- 简化分母,通常利用平方差公式。
- 简化最终的表达式。
通过使用共轭表达式,可以将含有根号的分数变得更加简洁和易于处理。