数学基础 -- 函数的极限

x → a x \to a xa有理函数的极限

当讨论有理函数 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x) x x x 趋向于 a a a 时的极限时,有以下几种情况需要考虑:

1. 直接代入法

如果 Q ( a ) ≠ 0 Q(a) \neq 0 Q(a)=0,那么可以直接代入 x = a x = a x=a 来求极限:
lim ⁡ x → a P ( x ) Q ( x ) = P ( a ) Q ( a ) \lim_{{x \to a}} \frac{{P(x)}}{{Q(x)}} = \frac{{P(a)}}{{Q(a)}} xalimQ(x)P(x)=Q(a)P(a)

2. 分母为零但分子不为零

如果 Q ( a ) = 0 Q(a) = 0 Q(a)=0 P ( a ) ≠ 0 P(a) \neq 0 P(a)=0,则极限不存在(无穷大或无定义)。

3. 分子和分母同时为零(0/0 型)

如果 P ( a ) = 0 P(a) = 0 P(a)=0 Q ( a ) = 0 Q(a) = 0 Q(a)=0,则需要进一步化简函数或使用洛必达法则:
lim ⁡ x → a P ( x ) Q ( x ) = lim ⁡ x → a P ′ ( x ) Q ′ ( x ) \lim_{{x \to a}} \frac{{P(x)}}{{Q(x)}} = \lim_{{x \to a}} \frac{{P'(x)}}{{Q'(x)}} xalimQ(x)P(x)=xalimQ(x)P(x)
其中 P ′ ( x ) P'(x) P(x) Q ′ ( x ) Q'(x) Q(x) 分别是 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 的导数。此法则可重复使用,直到分子或分母不再为零。

4. 利用因式分解

如果 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 都可以因式分解,可以尝试将 x − a x - a xa 作为公因式提取出来,化简后再求极限。

示例

假设有一个有理函数 x 2 − 4 x − 2 \frac{x^2 - 4}{x - 2} x2x24 x x x 趋向于 2 时的极限:

1. 直接代入法

2 2 − 4 2 − 2 = 0 0 (需进一步处理) \frac{{2^2 - 4}}{{2 - 2}} = \frac{0}{0} \quad \text{(需进一步处理)} 22224=00(需进一步处理)

2. 因式分解

x 2 − 4 x − 2 = ( x − 2 ) ( x + 2 ) x − 2 \frac{{x^2 - 4}}{{x - 2}} = \frac{{(x - 2)(x + 2)}}{{x - 2}} x2x24=x2(x2)(x+2)
取消掉 x − 2 x - 2 x2 的因式:
lim ⁡ x → 2 ( x − 2 ) ( x + 2 ) x − 2 = lim ⁡ x → 2 ( x + 2 ) = 4 \lim_{{x \to 2}} \frac{{(x - 2)(x + 2)}}{{x - 2}} = \lim_{{x \to 2}} (x + 2) = 4 x2limx2(x2)(x+2)=x2lim(x+2)=4

小结
在处理有理函数的极限问题时,关键在于判断分母是否为零以及分子分母是否同时为零,从而选择适当的方法进行化简或求导。

x → ∞ x \to \infty x有理函数的极限

对于有理函数 f ( x ) = P ( x ) Q ( x ) f(x) = \frac{P(x)}{Q(x)} f(x)=Q(x)P(x),其中 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 分别是多项式,如果我们要讨论当 x x x 趋向于无穷大时有理函数的极限,我们需要比较 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 的最高次项的次数。

假设 P ( x ) P(x) P(x) 的最高次项的次数为 n n n Q ( x ) Q(x) Q(x) 的最高次项的次数为 m m m。我们有以下几种情况:

  1. n < m n < m n<m
    lim ⁡ x → ∞ P ( x ) Q ( x ) = 0 \lim_{x \to \infty} \frac{P(x)}{Q(x)} = 0 xlimQ(x)P(x)=0
    这是因为 Q ( x ) Q(x) Q(x) 的增长速度比 P ( x ) P(x) P(x) 快得多。

  2. n = m n = m n=m
    lim ⁡ x → ∞ P ( x ) Q ( x ) = a n b m \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \frac{a_n}{b_m} xlimQ(x)P(x)=bman
    其中 a n a_n an b m b_m bm 分别是 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 的最高次项的系数。

  3. n > m n > m n>m
    lim ⁡ x → ∞ P ( x ) Q ( x ) = ∞ 或 − ∞ \lim_{x \to \infty} \frac{P(x)}{Q(x)} = \infty \quad \text{或} \quad -\infty xlimQ(x)P(x)=
    这是因为 P ( x ) P(x) P(x) 的增长速度比 Q ( x ) Q(x) Q(x) 快得多,具体的符号取决于最高次项的系数的符号。

总结来说,当 x x x 趋向于无穷大时,有理函数的极限取决于其分子和分母多项式的最高次项的次数和系数的比较情况。

处理包含绝对值的函数极限

要计算包含绝对值的函数的极限,我们需要对绝对值函数进行拆分和分析。在处理绝对值函数时,我们通常需要根据绝对值表达式的定义,将函数拆分成两个部分,然后分别计算极限。

绝对值函数 ∣ x ∣ |x| x 定义如下:
∣ x ∣ = { x 如果  x ≥ 0 − x 如果  x < 0 |x| = \begin{cases} x & \text{如果 } x \geq 0 \\ -x & \text{如果 } x < 0 \end{cases} x={xx如果 x0如果 x<0

举一个具体的例子来说明,比如我们要计算以下函数在 x → 0 x \to 0 x0 时的极限:
lim ⁡ x → 0 ∣ x ∣ x \lim_{x \to 0} \frac{|x|}{x} x0limxx

我们可以将这个函数拆分为以下两种情况:

  1. x ≥ 0 x \geq 0 x0 时, ∣ x ∣ = x |x| = x x=x,所以函数为 x x = 1 \frac{x}{x} = 1 xx=1
  2. x < 0 x < 0 x<0 时, ∣ x ∣ = − x |x| = -x x=x,所以函数为 − x x = − 1 \frac{-x}{x} = -1 xx=1

因此,我们分别考虑 x → 0 + x \to 0^+ x0+ x → 0 − x \to 0^- x0 时的极限:

  • x → 0 + x \to 0^+ x0+ 时, ∣ x ∣ x = 1 \frac{|x|}{x} = 1 xx=1
  • x → 0 − x \to 0^- x0 时, ∣ x ∣ x = − 1 \frac{|x|}{x} = -1 xx=1

因为这两个极限不相等,所以
lim ⁡ x → 0 ∣ x ∣ x \lim_{x \to 0} \frac{|x|}{x} x0limxx
不存在。

再举一个例子,我们来计算以下函数在 x → a x \to a xa 时的极限:
lim ⁡ x → a ∣ x − a ∣ \lim_{x \to a} |x - a| xalimxa

我们可以将这个函数拆分为以下两种情况:

  1. x ≥ a x \geq a xa 时, ∣ x − a ∣ = x − a |x - a| = x - a xa=xa
  2. x < a x < a x<a 时, ∣ x − a ∣ = − ( x − a ) = a − x |x - a| = -(x - a) = a - x xa=(xa)=ax

所以我们分别考虑 x → a + x \to a^+ xa+ x → a − x \to a^- xa 时的极限:

  • x → a + x \to a^+ xa+ 时, ∣ x − a ∣ = x − a → 0 |x - a| = x - a \to 0 xa=xa0
  • x → a − x \to a^- xa 时, ∣ x − a ∣ = a − x → 0 |x - a| = a - x \to 0 xa=ax0

因此,
lim ⁡ x → a ∣ x − a ∣ = 0 \lim_{x \to a} |x - a| = 0 xalimxa=0

通过以上两个例子,我们可以总结出处理包含绝对值函数的极限的一般步骤:

  1. 将绝对值函数根据定义拆分成不同的情况。
  2. 分别计算每种情况下的极限。
  3. 如果左右极限相等,则该极限存在且等于这个值;如果不相等,则该极限不存在。
  • 24
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值