本章主要讲三角函数的如下内容
- 三角函数在小数、大数的行为
- 三角函数的导数
- 简谐运动
既然本章讲解的是三角函数,那么我们会先使用python绘制一张图,从这些图像来直观的了解三角函数。
下面的很多讲解我们都会结合这张图来说,有个直观的了解
三角函数小数情况
首先我们来看最后一个图,这个图是有两个函数组成的图像;函数一:;函数二:
;大家注意看图像当
趋于0的时候函数一的图像被函数二的图像覆盖;意思就是说
;因为
,所以
。
事实上,上面的等式永远不会成立,不过在的极限中确实有
那么呢?从上面第二个图可以看到,当
的时候
,如果分子是1分母非常小的时候,这个分数将会变得很大,注意:因为分子是正数,当
从左边趋于0的时候
是负数,当
从右边趋于0的时候
是正数。
那么呢?下面我们该公式进行推导;首先将
;在利用上面第一个公式代入,最终等于1
我们队上面的公式进行扩展推导
【例一】
【分析】当的时候,
也是接近0,只是在把
变成一个更小的数而已。所以当
时,
;可知
;我们可以自然而然的自动
对于一样适用
注意;这个公式只能应用于正弦和正切
【例二】
求极限值:
【分析】应用上面的公式,我们只要把分母也变成就可以得出解了
变化成
最后约分得
【例三】
求极限值:
【分析】无论看上去多复杂的表达式,我们都可以分解,一项一项的去求解,最后合并即可;我们把极限分为三个
变换成
根据上面的公式得