人工智能之数学基础----三角函数的极限及其导数

本文深入探讨三角函数在小数和大数情况下的行为,以及它们的导数。通过Python绘图辅助理解,详细解释了不同类型的极限问题,包括正弦和正切函数的特殊情况。并给出了多个求解三角函数极限和导数的实例,运用夹逼定理和三角恒等式进行推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章主要讲三角函数的如下内容

  • 三角函数在小数、大数的行为
  • 三角函数的导数
  • 简谐运动

 既然本章讲解的是三角函数,那么我们会先使用python绘制一张图,从这些图像来直观的了解三角函数。

下面的很多讲解我们都会结合这张图来说,有个直观的了解

三角函数小数情况

首先我们来看最后一个图,这个图是有两个函数组成的图像;函数一:y=sin(x);函数二:y=x;大家注意看图像当x趋于0的时候函数一的图像被函数二的图像覆盖;意思就是说  y=x=sin(x);因为 x=sin(x),所以\frac{sin(x)}{x}=1

 事实上,上面的等式永远不会成立,不过在x\rightarrow 0的极限中确实有

\lim_{x\rightarrow 0}\frac{sin(x)}{x}=1

 那么cos(x)呢?从上面第二个图可以看到,当x\rightarrow 0的时候cos(x)=1,如果分子是1分母非常小的时候,这个分数将会变得很大,注意:因为分子是正数,当x从左边趋于0的时候x是负数,当x从右边趋于0的时候x是正数

\lim_{x\rightarrow 0^{-}}\frac{cos(x)}{x}=-\infty \lim_{x\rightarrow 0^{+}}\frac{cos(x)}{x}=\infty \lim_{x\rightarrow 0^{-}}\frac{cos(x)}{x}DNE

那么tan(x)呢?下面我们该公式进行推导;首先将tan(x)=\frac{sin(x)}{cos(x)};在利用上面第一个公式代入,最终等于1

\lim_{x\rightarrow 0}\frac{tan(x)}{x}=\lim_{x\rightarrow 0}\frac{\frac{sin(x)}{cos(x)}}{x}=\lim_{x\rightarrow 0}(\frac{sin(x)}{x})(\frac{1}{cos(x)})=(1)(\frac{1}{1})=1 \lim_{x\rightarrow 0}\frac{tan(x)}{x}=1

我们队上面的公式进行扩展推导

【例一】

\lim_{x\rightarrow 0}\frac{sin(x^{2})}{x^{2}}

【分析】当x\rightarrow 0的时候,x^{2}也是接近0,只是在把x变成一个更小的数而已。所以当x\rightarrow 0时,x^{2}\rightarrow 0;可知\lim_{x\rightarrow 0}\frac{sin(x^{2})}{x^{2}}=1;我们可以自然而然的自动

                               \lim_{x\rightarrow 0}\frac{sin(5x)}{5x}=1          \lim_{x\rightarrow 0}\frac{sin(7x^{3})}{7x^{3}}=1               \lim_{x\rightarrow 0}\frac{sin(sin(x))}{sin(x)}=1

对于tan一样适用



注意;这个公式只能应用于正弦正切

【例二】

求极限值:\lim_{x\rightarrow 0}=\frac{sin(5x)}{x}

【分析】应用上面的公式,我们只要把分母也变成5x就可以得出解了

\lim_{x\rightarrow 0}=\frac{sin(5x)}{x}  变化成    \lim_{x\rightarrow 0}=\frac{\frac{sin(5x)}{5x} \times 5x}{x} 最后约分得\lim_{x\rightarrow 0}=\frac{sin(5x)}{5x} \times 5 =1\times 5=5

【例三】

求极限值:\lim_{x\rightarrow 0}\frac{sin^{3}(2x)cos(5x^{19})}{xtan(5x^{2})}

【分析】无论看上去多复杂的表达式,我们都可以分解,一项一项的去求解,最后合并即可;我们把极限分为三个

\lim_{x\rightarrow 0}sin^{3}(2x)  变换成 \lim_{x\rightarrow 0}(\frac{sin(2x)}{2x} \times 2x)^{3}  根据上面的公式得  (1 \times 2x)^{3}=8x^{3}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值