- 博客(11)
- 收藏
- 关注
原创 微积分----极限(一)
本节主要从直观上来讲解极限,让大家对极限有个直观的理解,所以在很多地方可能描述不够严谨1、微积分和极限的关系?实际上微积分可以定义为微积分就是研究极限,所以我们将会分几个章节来讲解极限,为后面的微积分学习打基础。用一句简单的话来描述极限:当接近某个数据时,函数会发生什么变化;我们就是来研究这个变化的在英文里,极限(limit),所以在后面的表达式里面我们将会用(limi)来表示...
2020-05-02 14:57:06 2259
原创 人工智能之数学基础----指数函数和对数函数
本章主要回顾指数函数和对数函数,指数函数和对数函数求导回顾指数函数和对数函数的基础知识eee 的定义和性质如何对指数函数和对数函数求导指数函数和对数函数的极限求解对数函数的微分指数增长和指数衰变双曲函数基础知识下面的数表示是一个以2为底,指数为3的幂232^{3}23对于任意底数b>0b>0b>0和实数xxx、yyy都满足下面的指数法则任意非零数...
2020-01-15 15:31:19 675
原创 人工智能之数学基础----隐函数求导和相关变化率
本章主要讲解隐函数求导和相关变化率,大家理解什么叫隐函数及其如何求导隐函数求导相关变化率隐函数求导首先我们来理清什么叫隐函数,讲解隐函数之前我们来讲显函数,因为隐函数是相对显函数而言的y=f(x)y=f(x)y=f(x)像这种函数中,明显的用一个变量xxx来表示另一个变量yyy。例如:y=x2y=x^{2}y=x2F(x,y)=0F(x,y)=0F(x,y)=0像这种函数中(...
2020-01-12 17:37:11 506
原创 人工智能之数学基础----三角函数的极限及其导数
本章主要讲三角函数的如下内容三角函数在小数、大数的行为 三角函数的导数 简谐运动既然本章讲解的是三角函数,那么我们会先使用python绘制一张图,从这些图像来直观的了解三角函数。下面的很多讲解我们都会结合这张图来说,有个直观的了解三角函数小数情况首先我们来看最后一个图,这个图是有两个函数组成的图像;函数一:;函数二:;大家注意看图像当趋于0的时候函数一的图像被函数...
2020-01-10 17:25:48 1008
原创 人工智能之数学基础----求解微分问题
本章主要讲解微分的方法求解的常用公式使用定义求导 使用乘积法则、商法则、链式法则 切线方式 如何对分段函数求导使用定义求导上一章我们知道公式【例】函数;求函数的导数 利用公式: 代入值 对分子化简同分母 ...
2020-01-07 21:35:32 422
原创 人工智能之数学基础----连续性和可导性
本章主要讲解函数的联系性,函数的联系性也是导数的必要条件,从而延伸讲解可导性在一点处及在一个区间上联系连续函数的零点定理、最值定理、介值定理平均速度、瞬时速度切线和导数二阶导数和高阶导数在一点上连续如果,函数在点处连续假设函数有一个点的附近是连续【左,右连续】的,这个函数的其它地方不连续没关系,只要在附近连续就可以,总结点上连续;一、点存在,必须有定义,...
2020-01-05 22:25:14 568
原创 人工智能之数学基础----多项式极限求解
本章主要讲解如下内容时的有理函数时的有理函数时的有理函数极限值时有理函数的极限极限,其中和都是多项式,并且a是一个有限的数,(注意:两个多项式之比,称做有理函数)遇到这种的极限求解有下面几种方案直接将带入函数中求解 例如: 直接将-1代入计算极限值-2如果代入计算分子、分母为0;考虑因式分解 例一:直接将2代...
2020-01-02 22:25:23 6167
原创 人工智能之数学基础----极限
本章主要讲解下面的内容什么是极限 左、右极限 在、处的极限 极限不存在 三明治定理什么是极限左边函数表示: 当;表示函数在处没有定义域;从函数可以看出该函数在在非常接近2(但是永远不等于2)的时候函数就非常接近1;那么要多接近2呢?回答是你想多接近2就有多接近2;当充分的接近2的时候函数就非常接近1,但是有永远不等于1。这就是极限,表达式可以写成:当接近2(但是不等于...
2019-12-31 21:42:03 320
原创 人工智能之数学基础----三角学论证
本章主要讲解三角函数基本应用用弧度度量的角与三角函数的基本知识 三角函数图像应用 三角恒等式三角函数常用表 名称 表达式 正弦函数 0 1 余弦函...
2019-12-31 11:25:32 519
原创 常用的三角函数
角度三角函数\frac{角度}{三角函数}三角函数角度000^{0}0030030^{0}30045045^{0}45060060^{0}60090090^{0}900sinαsin\alphasinα012\frac{1}{2}2122\frac{\sqrt{2}}{2}2232\frac{\sqrt{3}}{2}231cosαcos\al...
2019-12-20 20:27:49 396
原创 人工智能之数学基础----勾股定理论证
做8个全等的直角三角形,设它们的两条直角边长为a、b,斜边长为c,再做三个边长为a、b、c的正方形,使它们像上图那样拼成两个正方形。从图上可以看到,这两个正方形的边长都为(a+b),所以这两个正方形面积相等。左图面积右图面积a2+b2+4∗12aba^{2}+b^{2}+4*\frac{1}{2}aba2+b2+4∗21abc2+4∗12abc^{2}+4 * \f...
2019-12-20 20:25:46 416
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人