数学基础 -- 伸缩求和法

伸缩求和法

伸缩求和法是一种通过将一组数列相加时,使用部分消去或抵消项的技巧,简化计算过程的方法。该方法特别适用于有特定规律的数列,例如具有递推关系的数列。

示例:求和 S n = 1 / ( 1 × 2 ) + 1 / ( 2 × 3 ) + 1 / ( 3 × 4 ) + . . . + 1 / ( n × ( n + 1 ) ) Sn = 1/(1×2) + 1/(2×3) + 1/(3×4) + ... + 1/(n×(n+1)) Sn=1/(1×2)+1/(2×3)+1/(3×4)+...+1/(n×(n+1))

  1. 将通项公式进行分解:
    对于通项:
    1 k ( k + 1 ) = 1 k − 1 k + 1 \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1} k(k+1)1=k1k+11
  2. 将分解后的表达式代入求和式:
    S n = ( 1 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) S_n = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \cdots + \left( \frac{1}{n} - \frac{1}{n+1} \right) Sn=(1121)+(2131)++(n1n+11)
  3. 观察到部分和的项可以相互抵消,得到:
    S n = 1 − 1 n + 1 S_n = 1 - \frac{1}{n+1} Sn=1n+11
  4. 最终的求和结果为:
    S n = n n + 1 S_n = \frac{n}{n+1} Sn=n+1n

伸缩求和法应用示例

我们来举一个经典的伸缩求和法应用于数列求和的例子。假设我们要计算下面这个和:

S n = ∑ k = 1 n 1 k ( k + 1 ) S_n = \sum_{k=1}^{n} \frac{1}{k(k+1)} Sn=k=1nk(k+1)1

第一步:分解每一项

首先,我们将每一项 (\frac{1}{k(k+1)}) 进行分解。利用部分分式分解技巧,可以将其写成:
1 k ( k + 1 ) = 1 k − 1 k + 1 \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1} k(k+1)1=k1k+11
因此,整个和可以写成:
S n = ∑ k = 1 n ( 1 k − 1 k + 1 ) S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) Sn=k=1n(k1k+11)

第二步:应用伸缩求和

展开这个求和式:
S n = ( 1 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) Sn=(1121)+(2131)++(n1n+11)
可以看到,除第一个 (\frac{1}{1}) 和最后一个 (-\frac{1}{n+1}) 外,所有其他的项都相互抵消了。因此,求和的结果简化为:
S n = 1 − 1 n + 1 S_n = 1 - \frac{1}{n+1} Sn=1n+11

第三步:结果

最终的和为:
S n = 1 − 1 n + 1 S_n = 1 - \frac{1}{n+1} Sn=1n+11

实际应用场景

这种求和技巧常用于计算部分分式和,也广泛应用于数列的求解、递推关系的解法、概率论中的求和以及一些物理问题中涉及到的级数求和。

例如,在计算某些几何级数、调和级数或递归算法的时间复杂度时,伸缩求和法可以有效减少求解过程中的复杂度。

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值