题意
有n个非负整数,求使它们都是3的倍数,且或的和为t的方案数。
范围
n,t<=1e18
题解
考场:
因为是或,故相当于限制0的位一定不能选,1的位至少有一个选。如果不要求1的位至少有一个选,显然DP可以求出符合条件3的倍数的个数,所以考虑容斥,暴力地枚举哪些为1的位强制不选即可,效率O(
t
l
o
g
t
tlogt
tlogt)。
正解:
考虑如何避免枚举每一是否强制不选,即如何快速算出只有其中k位可选0/1(对于同一个k容斥系数相同),其余全0,使其是3的倍数的方案数。考虑每一位1(即
2
i
2^{i}
2i)有什么共同点,我们只关心它在mod3意义下的余数,发现在
2
i
2^{i}
2i在mod3意义下只可能为1或2,所以只有两种,枚举这两种的个数即可,效率O(
l
o
g
3
t
log^{3}t
log3t).