摘要:
本文将会更加深入地研究加法,尤其是连续加法(integral)。简单探讨无限的意义。
格式约定:
这是正文。
这是引用,导言,注释或拓展内容
斜体只是调侃,活跃气氛,没有实际意义
一种朴素的极限思想?
一个概率小问题
一些连续的求和问题,与面积无关……
(可以跳过这一小节,对全文完整性没有影响。)
例题2.1 给定一条长为 \(1\) 的线段,在上面等均匀随机地(uniform)取 2 个点,这两个点之间距离的数学期望是多少?
数学期望
数学期望(mathematic expectation)是试验中每次可能结果的概率乘以其结果 \(x\) 的总和,记作 \(\operatorname{E}(x)\)。通俗地讲,就是将随机事件进行足够多次并取每次结果的平均值。
例如,在 \(3,5,8\) 三个数中随机选一个数 \(x\),则 \(x\) 的数学期望为
\[\operatorname{E}(x) = \frac{3}{3}+\frac{5}{3}+\frac{8}{3}=\frac{16}{3} \]如果抽出 \(3,5\) 的概率都是 \(25\%\),抽出 \(8\) 的概率为 \(50\%\),则 \(x\) 的数学期望为
\[\operatorname{E}(x)=3\ 25\%+5\ 25\%+8\ 50\%=6 \]再例如,掷一枚公平的六面骰子,其每次“点数”的期望值是 \(\frac{7}{2}\),计算如下:
\[\operatorname{E}(x)=1\frac{1}{6}+2\frac{1}{6}+3\frac{1}{6}+4\frac{1}{6}+5\frac{1}{6}+6\frac{1}{6}=\frac{7}{2} \]值得注意的是,\(\frac{7}{2}\) 虽然是“点数”的期望值,但却不属于可能结果中的任一个,没有掷出此点数的可能。
在不产生歧义的前提下,数学期望也可以简称为期望(mean)。
解:不妨称所选两点分别为点 A 和点 B。
在一条线段任意的取点似乎无从下手,因此我们不妨先考虑有限的弱化情况:假如我们在线段上均匀的取两个点(其实就是线段的两个端点,称之为点 1 和点 2),并要求所选两点必须在点 1 或点 2 上,
/ | B 在点 1 | B 在点 2 |
---|---|---|
A 在点 1 | \(0\) | \(1\) |
A 在点 2 | \(1\) | \(0\) |
则距离(称为 \(d\))有 2 种不同情况,其中距离为 \(0\) 有 \(\frac12\) 的概率,距离为 \(1\) 有 \(\frac12\) 的概率。此时,
(我们使用角标 2 表示这是钦定 2 个点的弱化情况)
假如我们在线段上均匀的取三个点(线段的两个端点和线段的中点,称之为点 1、点 2 和点 3),并要求所选两点必须在点 1、点 2 或点 3 上,
/ | B 在点 1 | B 在点 2 | B 在点 3 |
---|---|---|---|
A 在点 1 | \(0\) | \(\frac12\) | \(1\) |
A 在点 2 | \(\frac12\) | \(0\) | \(\frac12\) |
A 在点 3 | \(1\) | \(\frac12\) | \(0\) |
则距离)有 3 种不同情况,其中距离为 \(0\) 有 \(\frac13\) 的概率;距离为 \(\frac12\) 有 \(\frac49\) 的概率;距离为 \(1\) 有 \(\frac29\) 的概率。此时,
通过类似的方法,还可以计算出
我们注意到,随着钦定的点数 \(n\) 增大,答案 \(\operatorname{E}_n(x)\) 逐渐趋近于 \(\frac13\)。我们知道,钦定的点越多,算出的值越接近在连续的线段上选点的真实答案,因此你可能会猜测
\(\lim\) 记号
\(\lim\) 是英语单词 limit 的缩写,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值。例如
\[\lim_{x\to\infty}\frac1x=0 \]表示当 \(x\) 足够大时,\(\frac1x\) 趋近于 \(0\)。
\(x\) \(1\) \(10\) \(100\) \(1000\) \(10000\) \(\cdots\) \(\frac1x\) \(1\) \(0.1\) \(0.01\) \(0.001\) \(0.0001\) \(\cdots\) 这是因为,对于不存在一个确定的数 \(n>0\),使得无论当 \(x\) 多大时都有 \(\frac1x>n\)。(换句话说就是,对于任意确定的数 \(n>0\),总能找到一个数 \(x\),使得 \(\frac1x<n\),并且所能选的所有 \(x\) 的最小值随着 \(n\) 减小而减小)
但是这如何证明呢?我们不妨假定在线段上均匀地取 \(n\) 个点(当 \(n\) 越来越大时答案会越来越接近真实值),称之为 \(D_1,D_2,D_3,\cdots,D_n\),并要求所选两点必须在 \(D_1,D_2,D_3,\cdots,D_n\) 中的某个点上。
显然此时原线段被 \(D_ i\) 分割为 \(n-1\) 段,每段长度都为 \(\frac1{n-1}\)。那么距离有 \(n\) 种不同情况,即对于 \(k\in\{0,1,2,\cdots,n-1\}\),距离可能是 \(\frac{k}{n-1}\)。我们不妨记距离为 \(\frac{k}{n-1}\) 的概率为 \(\operatorname{P_ d}(k)\)。那么所求的期望为
我们知道,概率是发生该事件的情况数除以总情况数。总情况数显然有 \(n^2\) 种。观察上表,我们注意到每种距离的情况都是在 2 条斜线上的(除 \(0\) 外,只有中间 1 条斜线):
容易看出,距离为 \(0\) 的情况有 \(n\) 种,\(\frac1{n-1}\) 有 \(2(n-1)\) 种,\(\frac2{n-1}\) 有 \(2(n-2)\) 种,……,即距离为 \(\frac{k}{n-1}\) 的有 \(2(n-k)\) 种情况。由此可得
进一步,代入到 \(\operatorname{E}_n(d)\),
那么当 \(n\) 足够大,我们有
由此,我们确信,所求之期望就是 \(\frac13\)。\(\qquad\qquad\text{w5}\)
路程 速度 加速度
汽车速度表上的速度代指是什么?
-
假如我们有一个匀速直线运动的物体,\(0\) 时刻时位置 \(s=0\),其速度 \(v=5\),\(t\) 个时刻后物体的速度、位置分别是多少?
\(t\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(v\) \(5\) \(5\) \(5\) \(5\) \(5\) \(5\) \(s\) \(0\) \(5\) \(10\) \(15\) \(20\) \(25\) 学过函数的同学,很容易就能看出,速度和位置满足
\[\begin{aligned}v(t)&=5\\s(t)&=5t\end{aligned} \] -
假如我们有一个匀加速直线运动的物体,\(0\) 时刻时位置 \(s=0\),速度 \(v=0\),其加速度 \(a=2\),\(t\) 个时刻后物体的速度、位置分别是多少?
\(t\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(a\) \(2\) \(2\) \(2\) \(2\) \(2\) \(2\) \(v\) \(0\) \(2\) \(4\) \(6\) \(8\) \(10\) \(s\) \(0\) \(1\) \(4\) \(9\) \(16\) \(25\) 学过物理的同学,很容易就能看出,加速度、速度和位置满足
\[\begin{aligned}a(t)&=2\\v(t)&=2t\\s(t)&=t^2\end{aligned} \]
导数
以上例子中,函数 \(a(t),v(t),s(t)\) 之间的关系是什么?
不难发现,加速度 \(a(t)\) 本质上是速度 \(v(t)\) 的速度,而速度 \(v(t)\) 是路程 \(s(t)\) 的速度。因此 \(a(t)\) 和 \(v(t)\) 是这样一种函数,它指示另外一个函数的增长速度。
指示原函数 \(f(x)\) 在自变量 \(x\) 极小的变化时因变量 \(f(x)\) 的变化速度的函数,称为导函数(derivative function),简称导数(derivative),记作 \(f'(x)\) 或 \(\operatorname{D}f(x)\)。形式化的
觉得这个定义不专业,不严谨?你可以看一看数学分析教材,那里的定义要多专业有多专业,除了看不懂之外没有任何缺点。
瞬时速度
导数是函数的瞬间变化率(instant change rate)。这听起来很矛盾,为什么既有“瞬间”,又有“变化”呢?我的意思是变化是在时间中体现的,当在一个时刻里,物体就没有变化的空间了。
我们知道时刻 \(a\) 至时刻 \(b\) 的速度的定义是
\[v=\frac{s_b-s_a}{b-a} \]但是我们刚才定义的速度函数 \(v(t)\) 就很奇怪了,它只需要一个参数时刻参数 \(t\) 就可以得到一个速度。但是我给一辆行使中的小汽车拍一张照片,你不可能说出他的速度吧?
汽车的速度仪表盘本质上是计算了时刻 \(t\) 到时刻 \(t+dt\) 的速度,其中 \(dt\) 是一个非常小的值,例如 0.01 秒。
例如当 \(s(t)=t^2,t=3\) 时,若取 \(dt=0.01\) 则 \(v(3)=\frac{s(3+0.01)-s(3)}{0.01}=6.01\),当 \(dt\) 越来越小时,\(v(t)\) 就会越来越接近 \(s(t)\) 的瞬间变化率:
\(dt\) \(1\) \(0.1\) \(0.01\) \(0.001\) \(0.0001\) \(\cdots\) \(v(3)\) \(7\) \(6.1\) \(6.01\) \(6.001\) \(6.0001\) \(\cdots\) 我们注意到,随着 \(dt\) 越来越小,\(v(3)\) 的值越来越接近 \(6\),也就是说
\[v(3)=\frac{s(3+dt)-s(3)}{dt}=6 \]由此,我们对“瞬间变化率”有了初步的认识,更进一步的,
\[\begin{aligned}v(t)&=\frac{s(t+dt)-s(t)}{dt}\\&=\frac{(t+dt)^2-t^2}{dt}\\&=\frac{t^2+2t\ dt+(dt)^2-t^2}{dt}\\&=2t+dt\end{aligned} \]由于 \(dt\) 是一个极小的,趋近于 \(0\) 的数,因此可以忽略不计,即
\[v(t)=2t \]
上面那个飞矢不动的悖论吗?人家古希腊几千年前就研究过啦
记号 \(dx\)
\(dx\) 在微积分中很常用,表示 \(x\) 的一个极小变化量。也就是说 \(dx\) 默认趋近于 \(0\)。因此,下面两种写法是等价的:
\[f'(x)=\lim_{h\to0}\frac{f(x+h)-f(x)}{h} \]\[f'(x)=\frac{f(x+dx)-f(x)}{dx} \]
不定积分
之前的例子中,函数 \(a(t),v(t),s(t)\) 之间的关系是什么?
不难发现,速度 \(v(t)\) 本质上是加速度 \(a(t)\) 的某种连续的和,而路程 \(s(t)\) 是速度 \(v(t)\) 的某种连续的和。因此 \(v(t)\) 和 \(s(t)\) 是这样一种函数,它指示另外一个函数的连续和。
几何上看,这种连续的和是函数下方区域的面积,下图为 \(v(t)=2t\) 时 \(s(3)\) 所对应的面积。
关于函数 \(f(x)\) 下方的面积的函数,称为函数 \(f(x)\) 的不定积分(indefinite integral),记作 \(\int f(x)dx\)。
求导
函数千千万万,怎么计算每一个的导数?
单项式的导数
我们刚才已经知道,对于 \(f(x)=x^2\),其导数 \(f'(x)=2x\),那么对于任意一个单项式 \(f(x)=x^n\) 呢?
若 \(f(x) = x^n(n\not=0)\),则其导数
\((x+dx)^n\) 展开后的 \(x^n\) 项与后面的 \(-x^n\) 抵消,\(nx^{n-1}dx\) 项保留下来了,除去分母之后变为 \(nx^{n-1}\),而剩下的众多项都至少包含 \((dx)^2\),除去分母之后任然包含 \(dx\),因此忽略不计。所以我们得到
定理2.2 上面这条规律(不规范地)记作
sin 和 cos 的导数
让那些被“解析”、“代数”夺去的直观意义,在这里补回来吧!
若 \(f(x)=\sin(x)\) 或 \(f(x)=\cos(x)\),那么函数的导数是什么呢?
例题2.3 求函数 \(f(x)=\sin(x)\) 的导数。
我们考虑使用几何方法,在单位圆(unit circle)上讨论这个问题。
单位圆
以原点为圆心,半径长度为 \(1\) 的圆称为单位圆。单位圆在三角学、复数乃至数论等众多方向有重要的应用。
单位圆的解析式为
\[x^2+y^2=1 \]我们学习三角函数时就已经知道
\[\sin^2(\theta)+\cos^2(\theta)=1 \]由此我们就知道了单位圆的一个重要性质:单位圆上的点都可以写成 \((\cos(\theta),\sin(\theta))\) 的形式,同样的,形如 \((\cos(\theta),\sin(\theta))\) 的点都是在单位圆上。
解: 现在我们想知道,
图下所示,点 \(C\) 在单位圆 \(\odot A\) 上,使得 \(\angle FAC=x\),\(\odot A\) 与 \(x\) 轴交于点 \(B(1,0)\),过点 \(C\) 做 \(CF\perp AB\) 于点 \(F\),做 \(\odot A\) 的切线 \(CD\),使得 \(\angle CAD=h\),过 \(D\) 做 \(DE\perp CF\)。
由于 \(\angle FAC=x\),容易知道 \(C(\cos(x),\sin(x))\)。当 \(h\) 足够小时 \(D\) 几乎在 \(\odot A\) 上,所以我们是要求出 \(CE\) 的长度,即
通过圆的基础知识,我们知道连接切点和圆心的半径与切线相互垂直,即 \(AC\perp CD\),所以
根据相似三角形的性质可知,
代入上式可得
所以现在只要求出 \(\lim_{h\to0}\frac{\sin(h)}{h}\) 的值,即可知道 \(f(x)=\sin(x)\) 的导数。
绘制一个中心角为 \(h\) 弧度、半径为 \(1\) 的扇形(sector) \(S\)。这将用于建立可用于缩放定理的不等式:
通过扇形的面积公式,我们知道扇形的面积是 \(S=\frac h2\)。
如下图,画三角形 \(T\) 与 \(S\) 的角相同,其底面为 \(1\),高度为 \(\sin(h)\)。这意味着 \(T\) 的面积是 \(T=\frac{\sin(h)}2\)。由于 \(T\) 包含在 \(S\) 中,其面积必然更小:
如下图,画半径为 \(\cos(h)\) 的扇形 \(S'\),其的面积为\(\frac{h\cos^2(h)}2\)。因为 \(S'\) 包含在三角形 \(T\) 中,所以它的面积必然更小:
由此我们得到不等式
每一项同时乘以 \(\frac2h\) 得到,
当 \(h=0\) 时,有
即
由夹逼定理可得
代入之前的式子,得到
至此,我们就求出了 \(\sin(x)\) 的导数(即 \(\cos(x)\))。\(\qquad\qquad\text{w5}\)
试一试2.4 尝试仿造上面的方法(或自己设计新方法)求出函数 \(f(x)=\cos(x)\) 的导数。
答案: \(f'(x)=-\sin(x)\)
这两条规律记作(分被称为定理2.3和定理2.4)
自然常数
传说中有一个人,叫做
FISHER_
,拥有无穷无尽的神力和高深莫测的魔法。他掌管这世界上一切吉祥的和不祥的事情的发生和停止……
FISHER_
在 3 月 5 日(神渔标准时间)的开始时刻重量为 \(1\) 个单位,从此之后他的体重以每天翻一倍的速度增长,那么他的体重关于自 3 月 5 日以来的天数的函数 \(f(x)\) 是什么?
注意到,这里的增长速度就是函数 \(f(x)\) 的导数。不假思索地,你可能会回答
我们来验证一下:由于体重每天翻一倍,函数 \(f(x)\) 的导数应该和自己一样,即
对于函数 \(f(x)=2^x\),它的导数我们目前还不知道怎么求,但是从数值上拟合 \(x=5\) 处的导数,可以发现似乎 \(f(x)=2^x\) 的导数并不是自己(看起来这个数趋近于 \(22.1807097779\))
\(x\) | 5 |
---|---|
\(2^x\) | \(32\) |
\(dx\) | \(0.00001\) |
\(\operatorname{D}(2^x)\) | \(22.1808\) |
\(dt\) | \(0.1\) | \(0.01\) | \(0.001\) | \(0.0001\) | \(0.00001\) | \(\cdots\) |
---|---|---|---|---|---|---|
\(\operatorname{D}(2^x)\) | \(22.9675\) | \(22.2578\) | \(22.1884\) | \(22.1815\) | \(22.1808\) | \(\cdots\) |
我们尝试对 \(f(x)=2^x\) 求导
注意上面式子里括号中的一部分,\(\frac{2^{dx}-1}{dx}\) 与 \(x\) 的取值无关,数值计算得到它是一个大约为 \(0.69\) 的常数。因此 \(f(x)=2^x\) 的导数并不是他它自身,而是自身的约 \(0.7\) 倍。
这么说来,\(f(x)=2^x\) 是一个不错的尝试,我们已经很接近正确答案了。
那么那个函数的导数是它自己呢?或者说以什么数为底数能使得后面那部分的常数恰好等于 \(1\) 呢?不妨设未知数 \(e\),使得函数 \(f(x)=e^x\) 满足 \(f'(x)=e^x\),即
在解出 \(e\) 的值之前,我们最好先搞清楚为什么 \(f(x)=2^x\) 的导数不是它自己,难道第二天的重量翻倍不是变为 \(2\) 个单位吗?
如果“天”为时间的最小颗粒单位,那么 1 天之后,重量确实为 \(2\) 个单位;
但是如果时间的最小颗粒单位为 \(\frac12\) 天,那么每 \(\frac12\) 天,重量变为原来的 \((1+\frac12)\) 倍,所以 1 天后 FISHER_
的重量为 \((1+\frac12)^2=\frac{4}{9}\),比 \(2\) 稍大;
相似地,那么如果时间的最小单位为 \(\frac1n\) 天,那么每 \(\frac1n\) 天,重量变为原来的 \((1+\frac1n)\) 倍,所以 1 天后 FISHER_
的重量为 \((1+\frac1n)^n\),在本问题中,时间是连续的,因此 1 天之后,FISHER
真正的重量为
由于 \(f(x)=e^x\),所以 \(f(1)=e\),解得
所以 \(e\) 等于多少呢,这很难说,简单的数值拟合可以发现 \(e\in(2,3)\),而且离 \(3\) 比较接近。事实上,\(e\) 是一个无理数,我们只知道它的值大约是 \(2.71828\)。\(\lim_{n\to\infty}(1+\frac1n)^n\) 被称为自然常数(natural constant),记作 \(\mathtt{e}\)。
这里的常数 \(\mathtt{e}\) 和上面未知数的 \(e\) 还用了不同的字体?搞这么多花里胡哨的玩意儿!
还有一个问题没有搞清楚:上面函数 \(f(x)=2^x\) 的导数到底是多少呢?
我们要搞清楚下面式子,
就可以就出 \(f(x)=2^x\) 的导数。
例题2.5 若函数 \(f(x)=2^x\),就函数 \(f(x)\) 的导数 \(f'(x)\)。
解: 由我们之前的推导已经知道
令 \(k=a^h-1\),则 \(h=\log_2(k-1)\),换元得
注意到当 \(h\) 趋近于 \(0\) 时 \(k\) 也趋近于 \(0\),因此可以转化为
应用定理1.10,
转化 \(\lim\) 的位置
现在只需要知道 \(\lim_{k\to0}(k-1)^\frac1k\) 即可,我们根据 \(\mathtt e\) 的定义
用 \(\frac1k\) 替换 \(k\),
由于当 \(\frac1k\to\infty\) 时,\(k\to0\),最终得到
代回上面式子
代入 \(1=\log_22\),应用换底公式(定理1.12),
自然对数
在应用中,以 \(\mathtt e\) 为底对数十分常见,称为自然对数(natural logarithm),记作 \(\ln\)。即
\[\forall_a\ln a=\log_\mathtt e2 \]
至此,我们就求出了 \(2^x\) 的导数(即 \(2^x\ln2\))。\(\qquad\qquad\text{w5}\)
将上述过程中的 \(2\) 替换成任意其他常数,可以得到
定理2.6 对于任意常数 \(c\),函数 \(f(x)=c^x\) 的导数 \(f'(x)=c^x\ln c\)。
那么假如指数不是 \(x\),而是 \(2x\) 或者其他的什么玩意儿呢?
例题2.7 若函数 \(f(x)=\mathtt{e}^{2x}\),求函数 \(f(x)\) 的导数 \(f'(x)\)。
这个问题相当简单,用现实意义来解释,就是 FISHER_
达到某个重量只用原来一半的时间,此时 FISHER
每 \(\frac12\) 天就能使重量翻一倍。这个问题用已经研究过的知识可以轻松解决,请读者自己动手试一试。
解:根据乘方的基本性质,有
取 \(c=\mathtt e^2\) 代入定理2.6,
化简即得答案 \(f'(x)=2\mathtt e^{2x}\)。\(\qquad\qquad\text{w5}\)
函数和
\(x^2+x\) 的导数是多少?
我们知道 \(\operatorname{D}(x^2)=2x,\operatorname{D}(x)=1\),那么 \(\operatorname{D}(x^2+x)\) 是否就是 \(\operatorname{D}(x^2)+\operatorname{D}(x)=2x+1\)?
从这一节开始,我们将讨论通用的求导法则。我们再看一下导数的定义
导数就是因变量的变化量除以自变量的变化量,我们把自变量的变化量记作 \(dx\),那么我们不妨把因变量的变化量记作 \(df\)。所以导数就是
假设我们有函数 \(f(x)\) 和 \(g(x)\),想要求函数 \((f+g)(x)\) 的导数 \((f+g)'(x)\)。
函数加减运算
为了方便,我们记
\[\begin{aligned}(f+g)(x)&=f(x)+g(x)\\(f-g)(x)&=f(x)-g(x)\end{aligned} \]
由此我们得出,两个函数的和的导数等于这两个函数的导数的和,即
定理2.8 对于两个函数 \(f(x),g(x)\),有 \((f+g)'(x)=f'(x)+g'(x)\)。
函数积
\(x^2\mathtt e^x\) 的导数是多少?
我们知道 \(\operatorname{D}(x^2)=2x,\operatorname{D}(\mathtt e^x)=\mathtt e^x\),那么 \(\operatorname{D}(x^2\mathtt e^x)\) 是否就是 \(\operatorname{D}(x^2)\operatorname{D}(\mathtt e^x)=2x\mathtt e^x\)?
现在我们有函数 \(f(x)\) 和 \(g(x)\),想要求函数 \(h(x)=f(x)g(x)\) 的导数 \(h'(x)\)。
无论什么时候,把代数中的乘法与几何中图形的面积联系起来,往往都是很好的。绘制一个长方形,其长宽分别为 \(f(x)\) 和 \(g(x)\)。
现在我们 \(x\) 增加一点点 \(dx\),则 \(f(x)\) 增加了 \(df\),\(g(x)\) 增加了 \(df\)。总的来说,面积增加了 \(f(x)dg+g(x)df+df\ dg\)。其中 \(df\ dg\) 是极小的,可以忽略不计。
由此我们知道了
定理2.9 (乘积求导法则)若我们有函数 \(f(x)\) 和 \(g(x)\),则函数 \(h(x)=f(x)g(x)\) 的导数是
函数复合
函数的复合运算
函数复合就是将一个函数的输出作为下一个函数的输入的过程,即
\[\begin{aligned}(f\circ g)(x)&=f(g(x))\\(f\circ g\circ h)(x)&=f(g(h(x)))\end{aligned} \]
假如现在我们有两个函数 \(f(x)\) 和 \(g(x)\),求 \((f\circ g)'(x)\)。
由于有
取 \(x=g(x)\),并代入,得到
取 \(x=g(x)\) 后代入 \(f'(x)=\frac{f(x+dx)-f(x)}{dx}\),
代入 \(g'(x)=\frac{dg}{dx}\)
分子分母约去 \(dx\) 就得到了答案,即
定理2.10 (链式求导法则)对于两个函数 \(f(x)\) 和 \(g(x)\),其复合函数 \((f\circ g)'(x)\) 的导数 \((f\circ g)'(x)=f'(g(x))g'(x)\)。
小结
对于如何求导的研究至此告一段落了,通过定理2.2 到定理2.10,我们知道了
常见函数的导数:
原函数 \(f(x)\) | 导数 \(f'(x)\) | (限制条件) |
---|---|---|
\(x^n\) | \(nx^{n-1}\) | / |
\(\sin(x)\) | \(\cos(x)\) | / |
\(\cos(x)\) | \(-\sin(x)\) | / |
\(c^x\) | \(c^x\ln c\) | \(c>0\) |
求导法则:
组合方式 | 导数 |
---|---|
\(f(x)+g(x)\) | \(f'(x)+g'(x)\) |
\(f(x)g(x)\) | \(f(x)g'(x)+f'(x)g(x)\) |
\(f(g(x))\) | \(f'(g(x))g'(x)\) |
熟练运用上面的规律,已经可以求出大量函数的导数了,请读者自己动手算一算下面例题
例题2.11 已知函数 \(f(x)=2^{x\sqrt{x^2+x}}\),求该函数的导数 \(f'(x)\)。
解: 对函数 \(g_1(x)=x^2\) 应用定理2.2,
对函数 \(g_2(x)=x\) 应用定理2.2,
对函数 \(g_3(x)=g_1(x)+g_2(x)\) 应用定理2.8,
对函数 \(g_4(x)=\sqrt x\) 应用定理2.2(\(\sqrt x=x^{\frac12}\)),
整理得
对函数 \(g_5(x)=(g_3\circ g_4)(x)\) 应用定理2.10并整理,
对函数 \(g_6(x)=g_2(x)g_5(x)\) 应用定理2.9并整理,
对函数 \(g_7(x)=2^x\) 应用定理2.6,
对函数 \(f(x)=(g_6\circ g_7)(x)\) 应用定理2.10并整理,
即为函数 \(f(x)\) 的导数。\(\qquad\qquad\text{w5}\)
此题计算量确实较大(我用了将近 30 分钟),但是思路其实是相当简单的:反复运用这些法则,把复杂的函数转化为基本的函数。
积分
加法和减法,乘法和除法……
回顾先前的例子,我们知道函数 \(v(t)\) 是 \(s(t)\) 的导数,反过来函数 \(s(t)\) 是 \(v(t)\) 的(不定)积分。这使得我们意识到,求导和积分互为逆变换。也就是说,
定义2.12 对于给定的函数 \(f(x)\),如果存在一类函数 \(F(x)\) 使得 \(F'(x)=f(x)\),则称所有 \(F(x)\) 中常数项为 \(0\) 的那个函数为 \(f(x)\) 的不定积分。
例如,对于函数 \(f(x)=x^2\),其不定积分为 \(F(x)=\frac13x^3\)。
定积分
考虑这样一个问题:
例题2.13 求函数 \(f(x)=x^2\) 图像下方从 \(x=1\) 到 \(x=3\) 区域(换句话说就是 \(y=x^2,x=1,y=0,x=3\) 四条(曲)线围成的图形的面积)的面积。
解: 我们使用与最开始那个概率问题相似的方法,不妨先用几个矩形拟合一下 \(y=x^2\) 的曲线:
容易发现,所使用的的矩形越多,拟合结果越精准。不妨假设现在用 \(n\) 个矩形进行拟合,这 \(n\) 个矩形的面积记作 \(S_n\)。每个矩形的宽为 \(\frac{3-1}n=\frac2n\),第 \(k\) 个矩形的高为
所以我们要求的就是
那么当 \(n\) 足够大时,
故该面积为 \(\frac{26}3\)。\(\qquad\qquad\text{w5}\)
这种有明确的上下界的积分(上面例题中上下界为 \(1\) 至 \(3\)),叫做定积分(definite integral)。记作 \(\int_a^bf(x)dx\)。例如例题2.13就是要求
例题解答中所使用的定积分求法较为复杂,一个简单的办法是使用牛顿-莱布尼茨公式(Newton-Leibniz formula,又名微积分基本定理)。
定理2.14 (牛顿-莱布尼茨公式)一个连续函数在区间 \([a,b]\) 上的定积分等于它的任意一个原函数(不定积分)在区间 \([a,b]\) 上的增量。即如果有 \(F'(x)=f(x)\),则
使用这个方法求定积分变得十分简单,还是以 \(\int_1^3x^2dx\) 为例:注意到
固有
极限
\(y=\frac{\sin(x)}x\) 的图像是什么样子的?在 \(x=0\) 时应该如何画?
类似于 \(f(x)=\frac{\sin(x)}x\) 这样的函数在一些特殊点无法直接取值,但是其值任然是有意义的。
我们注意图中红圈标记处,直接计算会得到 \(\frac{\sin0}{0}\) 这样没有意义的结果,但是我们从图像中可以很清晰的得出 \(f(0)=1\) 的结论,这是因为
这就使用了极限(limitation)的概念。
极限的标准定义
设 \(f:\mathbb D\subset\mathbb R\to\mathbb R\) 是一个定义在实数上的函数。 并在某个开区间 \(x>A\) 或 \(x<A\) 上有定义。 \(L\) 是一个给定的实数。 \(c\) 是一个实数,并且函数 \(f\) 在 \(c\) 的某个去心邻域上有定义。如果对任意的正实数 \(\epsilon\) ,都存在一个正实数 \(\delta\) ,使得对任意的实数 \(x\) ,只要 \(f\) 在点 \(x\) 处有定义,并且 \(x\) 在 \(c\) 的某个 \(\delta\) -(去心)邻域中(即 \(|x-c|\le\delta\) ),就有 \(|f(x)-L|\le\epsilon\) ,那么就称 \(L\) 是函数 \(f\) 在 \(x\) 趋于 \(c\) 时的极限,或简称 \(L\) 为 \(f\) 在 \(c\) 的极限,记为 \(\lim_{x\to c}f(x)=L\) 。反之则称 \(L\) 不是 \(f\) 在 \(x\) 趋于 \(c\) 时的极限。
来自 维基教科书(啥都看不懂系列)
注意,极限要求从函数两边趋近能达到同样的结果。举个例子,函数 \(f(x)=\frac1x\) 在 \(x=0\) 时的值是未定义的,(如下图红线所示)因为从小于 \(0\) 出发回趋向于 \(-\infty\) 而从大于 \(0\) 出发回趋向于 \(+\infty\)。
洛必达法则
微积分需要连续,连续需要无穷小,可是谁知道无穷小长什么样子?\(\qquad\qquad\)———— 伯特兰·罗素
之前我们尝试求三角函数的导数时,曾经用相当巧妙的几何方法求出过
那个方法虽然巧妙,但是相当复杂,而且不具备通用性,有较高的思维难度。下面介绍洛必达法则(L'Hospital's rule),此方法能够较为简单地求出大多数函数的极限。
定理2.15 (洛必达法则 描述简化版)对于一个形如
的极限,如果它满足
- \(x\) 趋向于常数 \(a\) 时,函数 \(f(x)\) 和 \(F(x)\) 都趋向于 \(0\);
- 在 \(a\) 附近(可以理解为 \(x=a-dx\) 和 \(x=a+dx\)),\(f'(x)\) 和 \(F'(x)\) 都有定义,且 \(F'(x)\not=0\);
- \(\lim_{x\to0}\frac{f(x)}{F(x)}\) 有定义。
则有
证明:(通俗不严谨版,某种程度上说,仅供感性理解)
由于在 \(a\) 附近,\(f'(x)\) 和 \(F'(x)\) 都有定义,我们知道,所求的极限也是有定义的。
由于当 \(x=0\) 时,\(f(x)=0,F(x)=0\),所以我们知道
当 \(x\) 的变化量足够小时(即变化量为极小的 \(dx\)),应该有
由此得出
代入之前的式子,
由此相除得到
即为所求证的等式。\(\qquad\qquad\blacksquare\)
严谨的证明请见 参考文献 - 洛必达法则的证明。
泰勒展开
没有其他外力,没有初速度的条件下,质点只能静止在原地。毫无自由可言。
给质点一个初速度,我们可以使质点单向匀速运动;
若再给定一个加速度,我们可以使速度均匀变化,从而产生拐弯运动;
若再给定加速度的变化率,我们使加速度均匀变化,速度拐弯变化,产生可转向拐弯运动;
……如果一开始就设定好质点的初速度,加速度,加加速度,加加加…加速度的话,正如用一只无形的手调控着它的命运,那么无论想让它何时拐,往何处拐,如何拐……就全都在初始条件的设计之中了。
-
考虑函数 \(f(x)=\sin(x)\),它的导数为
\[f'(x)=\cos(x) \]当 \(x=0\) 时,显然有 \(f(0)=0,f'(0)=1\)。但是满足上述条件的函数不止一个,至少还有
\[f(x)=x \] -
考虑函数 \(f'(x)=\cos(x)\),它的导数为
\[f''(x)=-\sin(x) \]当 \(x=0\) 时,显然有 \(f(0)=0,f'(0)=1,f''(x)=0\)。但是满足上述条件的函数不止一个,至少还有
\[f(x)=x \] -
考虑函数 \(f''(x)=-\sin(x)\),它的导数为
\[f'''(x)=-\cos(x) \]当 \(x=0\) 时,显然有 \(f(0)=0,f'(0)=1,f''(x)=0,f'''(x)=-1\)。但是满足上述条件的函数不止一个,至少还有
\[f(x)=x-\frac16 x^3 \] -
考虑函数 \(f'''(x)=-\cos(x)\),它的导数为
\[f^{(4)}(x)=\sin(x) \]高阶导数记号 \(f^{(n)}(x)\)
对原函数求 1 次导数,我们记作 \(f'(x)\);以此类推求 2 次导数,就记作 \(f''(x)\);但是当求很多次导数时,这种记号阅读和书写都不方便,所以我们用 \(f^{(n)}(x)\) 表示对原函数 \(f(x)\) 求 \(n\) 次导数后的函数。
当 \(x=0\) 时,显然有 \(f(0)=0,f'(0)=1,f''(x)=0,f'''(x)=-1,f^{(4)}(x)=0\)。但是满足上述条件的函数不止一个,至少还有
\[f(x)=x-\frac16 x^3 \]
以此类推,我们不停的对 \(f(x)=\sin(x)\) 求导,会得到一个循环,即
而且我们总能找到一个多项式函数,使得当 \(x=0\) 时这个多项式的前 \(n\) 阶导数与 \(\sin(x)\) 的导数相同,例如多项式
与 \(\sin(x)\) 的前 \(6\) 项导数相同,而多项式
与 \(\sin(x)\) 的前 \(12\) 项导数相同,这使得它们的函数图像在 \(x=0\) 附近极为接近(如下图)。
我们之所以总能够构造出这样的多项式,是因为多项式的每求导一次,最高次项的次数减 \(1\),并且其导数是完全可控的(由多项式的系数决定)。这些系数的分母是为了抵消求导导致的系数增加(下式中加粗的 \(n\))
每次求导时,指数 \(n\) 减一,导致系数一层层一共乘大了 \(n(n-1)(n-2)\cdots1\),即 \(n!\),所以分子要除去 \(n!\)。
综合上面描述,我们把这种多项式称为原函数的泰勒级数(Taylor's series),把这种展开过程称为泰勒展开(Taylor's expand)。
定理2.16 (泰勒公式)函数 \(f(x)\) 在 \(x=x_0\) 处的泰勒级数为
特别地,当取 \(x_0=0\) 的级数尤为常用,可以称为麦克劳林级数或 0 处的泰勒级数。此时有
如果我们求 \(f(x)=\mathtt e^x\) 的麦克劳林级数,并代入 \(x=1\),可以得到 \(\mathtt e\) 的一个渐进的表达形式,极为有趣
习题
- 已知二次函数 \(y=-x^2-2x-8\) 与直线 \(l\) 交于 \(A(-4,0),B(0,8)\),在二次函数上有一动点 \(P\),且点 \(P\) 在直线 \(l\) 上方运动,求 \(\triangle PAB\) 面积的最大值。
- 在 \([0,1]\) 区间内等概率地随机选取一个数 \(x\),求 \(x^2\) 的数学期望 \(\operatorname{E}(x^2)\)。
- 求 \(f(x)=\tan(x)\) 的导数 \(f'(x)\)。
- 求 \(f(x)=\sqrt{x^2+2x}+\sqrt{x^2+2}+x\) 的导数 \(f'(x)\)。
- 求 \(f(x)=\sqrt{x^2+2x}+\sqrt{x^2+2}+x\) 当 \(-4\le x\le4\) 时的取值范围。
- 求出 \(f(x)=\cos x\) 的麦克劳林级数的前 5 项。
- 求 \(\lim_{x\to1}\frac{\sin(\pi x)}{x^2-1}\) 的值。
- 求 \(f(x)=\arcsin(x)\) 的导数。
- 求半径为 \(r\) 的球的表面积公式(用含 \(r\) 的式子表示)。
- 平面上的解析式 \(y^2\sin(x)=x\) 上有一点 \(A(m,n)\),求 \(A\) 点处该图像的切线的斜率。
- 求函数 \(f(x)=\ln x\) 的导数 \(f'(x)\)。
- 在边长为 \(1\) 的正方形内等概率随机选取两点,它们之间的距离的数学期望是多少?