从20世纪50年代的早期机器人技术到今天的先进的,算法驱动的机器学习,人工智能在很短的时间内走过了漫长的道路。虽然人工智能仍然相对年轻,但QASource发现人工智能对自动化测试的当前和潜在价值是巨大的。随着应用程序日益复杂,软件开发生命周期的快速发展以及跨行业的高速竞争上市时间,工程师将获得所有可以获得的帮助,无论是来自机器还是其他人。
那么,为什么AI对自动化测试服务有益呢?简而言之,它允许机器学习和理解环境,执行“智能”操作,并自动改进自身。
让我们来看看这三种功能如何在不久的将来改善您的自动化测试计划 - 以及它将如何为您节省大量的时间,金钱和资源。
失败预测
QA工程师最大的资产是他/她的经验。根据他们所在的领域,经验丰富的测试专家熟悉常见的错误。他们甚至可以预测应用程序中的位置。
现在,想象一下使用这样的工程师团队的综合知识来编程AI机器人。在未来,AI机器人将使用预测性学习在开发生命周期的早期检测停止显示的错误。
尽量减少详尽的测试
虽然自动化测试已经改变了游戏规则,但在AI的帮助下它可以更快地完成。即使有很好的自动化程序,工程师仍然必须手动测试边缘情况和其他复杂配置。AI机器人很快就会负责推动这些类型的测试,以及重复的手动任务,例如点击界面中的按钮,将有效和无效的数据输入文本字段等等。
驱动性能测试
想象一下,测试应用程序中的每个操作,在每次完