CINTA5

1.定义映射 ϕ : G → G 为:g → g 2 g^{2} g2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。
证:设a,b是G中元素
充分性:由ϕ 是同态可得ϕ (ab)=ϕ (a)ϕ (b),所以 ( a ∗ b ) 2 = a 2 ∗ b 2 , 即 ( a ∗ b ) ∗ ( a ∗ b ) = a 2 ∗ b 2 (a*b)^{2}=a^{2}*b^{2},即(a*b)*(a*b)=a^{2}*b^{2} (ab)2=a2b2,(ab)(ab)=a2b2,由消去律可得ba=ab。所以G是阿贝尔群。
必要性:由G是阿贝尔群可得ab=ba,两边同时乘ab可得 ( a ∗ b ) 2 = ( b ∗ a ) ∗ ( a ∗ b ) (a*b)^{2}=(b*a)*(a*b) (ab)2=(ba)(ab)根据结合律可得 ( a ∗ b ) 2 = b ∗ a 2 ∗ b (a*b)^{2}=b*a^{2}*b (ab)2=ba2b,又根据交换律可得 ( a ∗ b ) 2 = a 2 ∗ b 2 (a*b)^{2}=a^{2}*b^{2} (ab)2=a2b2,即ϕ (ab)=ϕ (a)*ϕ (b)。

2.设 ϕ : G → H 是一种群同态。请证明:如果 G 是循环群,则 ϕ(G) 也是循环群;如果 G 是交换群,则 ϕ(G) 也是交换群。
设a是G的生成元,因为G是循环群,所以有 g = a n g=a^{n} g=an,则 对于ϕ(G),其元素 ϕ ( g ) = ϕ ( a n ) = ϕ ( a ∗ a ∗ a . . . ) = ϕ ( a ) ∗ ϕ ( a ) ∗ . . . . . = ϕ ( a ) n ϕ(g)=ϕ(a^{n})=ϕ(a*a*a...)=ϕ(a)*ϕ(a)*.....=ϕ(a)^{n} ϕ(g)=ϕ(an)=ϕ(aaa...)=ϕ(a)ϕ(a).....=ϕ(a)n,得证。
设a,b是G中元素,因为G是交换群,所以ab=ba,则 ϕ(G) 中有ϕ(a) ϕ(b)=ϕ(ab)=ϕ(ba)=ϕ(b)ϕ(a),得证。

3.证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群
证:因为[G:H]=2,所以g属于H或G不属于H
当g属于H时,则gH=H=Hg,所以H是G的正规子群。
当g不属于H时,设H’=G-H,设h属于H,设h’属于H’,因为H有封闭性,而g不属于H,所以有任意gh不属于H,即gh∈H’,即gH∈H’,同理Hg∈H’。对任意h’∈H’,在H中存在h使得h’=gh∈gH,即H’∈gH,同理可得H’∈Hg,所以gH=H’=Hg,所以是正规子群。

4.给定任意群 G,H 是群 G 的正规子群。请证明,如果群 G 是阿贝尔群,则商群 G/H也是阿贝尔群。
证:因为正规子群,所以设g∈G,则有gH=Hg。令G/H={gH:g∈G}。当G/H中两个元素分别为g和H中任意元素h时,因为H是G的子群,所以h属于G,又因为G是阿贝尔群,所以有任意gh=hg。当G/H中两个元素均在H中时,gH=H,因为H是阿贝尔群G的子群,所以H中的任意元素也满足ab=ba,所以H也是阿贝尔群。

5.给定任意群 G,H 是群 G 的正规子群。请证明,如果群 G 是循环群,则商群 G/H
也是循环群
证:令G/H={gH|g∈G}。设G生成元是a,因为G是循环群,所以G中的任意元素都可以表示为a的幂次方,即 g = a k g=a^{k} g=ak,其中k为整数。因此,gH可以表示为 a k H a^{k}H akH。现在需要证明aH是G/H的一个生成元。根据定义,如果aH是G/H的一个生成元,则对于任意gH∈G/H,都可以表示为 ( a H ) k (aH)^{k} (aH)k的形式,其中k为整数。因为群的封闭性,则有 a k H = ( a H ) k a^{k}H=(aH)^{k} akH=(aH)k。满足,所以封闭。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值