-
如果环 R 带乘法单位元 1,对任意 a ∈ R,请证明 −a = (−1)a。
证: 由分配律 , 1 ∗ a + ( − 1 ) ∗ a = ( 1 + ( − 1 ) ) ∗ a = 0 ∗ a = 0 , 即 − a = ( − 1 ) ∗ a 由分配律,1*a+(-1)*a=(1+(-1))*a=0*a=0,即-a=(-1)*a 由分配律,1∗a+(−1)∗a=(1+(−1))∗a=0∗a=0,即−a=(−1)∗a -
如果任取环 R 中的元素 x 都满足 x 2 = x x^{2} = x x2=x,请证明环 R 是交换环。
证: 任取 R 中元素 a , b , 有 a 2 = a , b 2 = b , 因为乘法封闭性,所以 a b 也在环内,所以有 ( a ∗ b ) 2 = a ∗ b , a ∗ b ∗ ( a ∗ b ) = a ∗ b , 由结合律 a ∗ ( b ∗ a ) ∗ b = a ∗ b 。若 R 是整环,则 a = 0 或 b = 0 , 此时 a b = b a = 0 ; 若 R 不是整环,根据消去律, a b = b a 。 任取R中元素a,b,有a^{2}=a,b^{2}=b,因为乘法封闭性,所以ab也在环内,所以有(a*b)^{2}=a*b,a*b*(a*b)=a*b,由结合律a*(b*a)*b=a*b。若R是整环,则a=0或b=0,此时ab=ba=0;若R不是整环,根据消去律,ab=ba。 任取R中元素a,b,有a2=a,b2=b,因为乘法封闭性,所以ab也在环内,所以有(a∗b)2=a∗b,a∗b∗(a∗b)=a∗b,由结合律a∗(b∗a)∗b=a∗b。若R是整环,则a=0或b=0,此时ab=ba=0;若R不是整环,根据消去律,ab=ba。 -
请解释为什么 Zn 在加法上的子群都是 Zn 的子环。
证:设Zn在加法上的子群是SubZ,显然对加法满足封闭性,单位元是0,设a,b属于SubZ,则有b逆元是-b,属于SubZ,所以a+(-b)属于SubZ,同时有a+a+a……a(b个a)属于SubZ,即ab属于SubZ。由命题12.3可得SubZ是Zn的子环。 -
证明环 2Z 不与环 3Z 同构。
证: 假设 2 Z 与 3 Z 同构,定义映射 ϕ : 2 Z − > 3 Z 为 ϕ ( 2 k ) = 3 k ,令 k = 1 则有 ϕ ( 2 ) = 3 ,令 k = 2 ,则有 ϕ ( 4 ) = 3 ∗ 2 = 6 ,而 ϕ ( 4 ) = ϕ ( 2 ) ∗ ϕ ( 2 ) = 9 ,所以不同构。 假设2Z与3Z同构,定义映射ϕ:2Z->3Z为ϕ(2k)=3k,令k=1则有ϕ(2)=3,令k=2,则有ϕ(4)=3*2=6,而ϕ(4)=ϕ(2)*ϕ(2)=9,所以不同构。 假设2Z与3Z同构,定义映射ϕ:2Z−>3Z为ϕ(2k)=3k,令k=1则有ϕ(2)=3,令k=2,则有ϕ(4)=3∗2=6,而ϕ(4)=ϕ(2)∗ϕ(2)=9,所以不同构。
终 の CINTA
于 2023-12-21 14:31:18 首次发布