poj 2992 Divisors 整数分解

设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数

将m分解质因数得到

p1有a1个

p2有a2个

....

由于每个质因数可以取0~ai个(全部取0就是1,全部取ai就是m)最后的答案就是(a1+1)*(a2+1)*....*

注意不能直接将m分解,因为太大,所以要先分解n,n-k,k,根据他们再来加减。

#include <iostream>
#include <cstdio>
#include <cmath>
#include<cstring>
#include<cstdlib>
#include<vector>
using namespace std;
//C(n,k)=n!/((n-k)!*k!)
struct node
{
    int x,num;
    node(int a,int b){x=a;num=b;}
};
vector<node> pri[444];
void init()
{
    for(int i=1;i<=435;i++)
    {
        int tn=i;
        for(int j=2;j*j<=tn;j++)
        {
            int cnt=0;
            if(tn%j==0)
            {
                while(tn%j==0) {tn/=j;cnt++;}
                pri[i].push_back(node(j,cnt));
            }
        }
        if(tn>1) pri[i].push_back(node(tn,1));
    }
}
int pnum[444];
long long cal(int n,int k)
{
    int tk=n-k;
    memset(pnum,0,sizeof(pnum));
    for(int i=n;i>=1;i--) for(int j=0;j<pri[i].size();j++) pnum[pri[i][j].x]+=pri[i][j].num;
    for(int i=tk;i>=1;i--) for(int j=0;j<pri[i].size();j++) pnum[pri[i][j].x]-=pri[i][j].num;
    for(int i=k;i>=1;i--) for(int j=0;j<pri[i].size();j++) pnum[pri[i][j].x]-=pri[i][j].num;
    long long ans=1;
    for(int i=1;i<=n;i++)
    {
        if(pnum[i]) ans*=(pnum[i]+1);
    }
    return ans;
}
int main()
{
    init();
    int n,k;
    while(~scanf("%d%d",&n,&k))
    {
        printf("%lld\n",cal(n,k));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TommyTT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值