Tyvj1415西瓜种植题解

  • 题目来源

http://www.tyvj.cn/p/1415

  • 题目大意
    西瓜地的种植范围是一条直线,有m个形如“从西瓜地b处到e处至少要种植t个西瓜”的条件,每块地最多种一个西瓜。问在满足所有条件的前提下,最少要种植多少西瓜?

  • 题解
    第一次做差分约束的题。这种类型的题和最短(长)路有着密切的联系。
    我们用 f[i] 表示前i块地种的西瓜总数,其中 f[0]=0
    “每块地最多种一个西瓜”说明 0f[i]f[i1]1
    “从西瓜地b处到e处至少要种植t个西瓜”说明 f[e]f[b1]t ;
    这两个限制条件构成了本题的差分约束系统。这里 较多,所以采用最长路。对所有 i=1n ,连边 i1i ,权值为0,(对应 f[i]f[i1]0 );连边 ii1 ,权值为-1,(对应 f[i]f[i1]1f[i1]f[i]1 );对m个条件,连边 b1e ,权值为t,(对应 f[e]f[b1]t
    在此图中以0为起点,spfa跑最长路,答案即为dist[n]。因为一定有解,所以不用判断正环。

  • Code

#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int maxn = 5005, nil = 0;
int n, m;
int pnt[maxn], nxt[maxn << 2], u[maxn << 2], v[maxn << 2], w[maxn << 2], e;
int d[maxn];
bool vis[maxn];
void addedge(int a, int b, int c)
{
    u[++e] = a; v[e] = b; w[e] = c;
    nxt[e] = pnt[a]; pnt[a] = e;
}
void init()
{
    int b, E, t;
    scanf("%d%d", &n, &m);
    //因为是最长路,所以直接边权变负了
    for(int i = 1; i <= m; ++i)
    {
        scanf("%d%d%d", &b, &E, &t);
        addedge(b - 1, E, -t);
    }
    for(int i = 1; i <= n; ++i)
    {
        addedge(i - 1, i, 0);
        addedge(i, i - 1, 1);
    }
}
void work()
{
    memset(vis, 0, sizeof(vis));
    memset(d, 0x3f, sizeof(d));
    queue <int> Q;
    d[0] = 0;
    vis[0] = true;
    Q.push(0);
    while(!Q.empty())
    {
        int t = Q.front();
        Q.pop();
        vis[t] = false;
        for(int j = pnt[t]; j != nil; j = nxt[j])
        {
            if(d[v[j]] > d[t] + w[j])
            {
                d[v[j]] = d[t] + w[j];
                if(!vis[v[j]])
                {
                    vis[v[j]] = true;
                    Q.push(v[j]);
                }
            }
        }
    }
    printf("%d\n", -d[n]);
}
int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值