6、卷积神经网络在股市时间序列预测与作物叶片病害检测中的应用

卷积神经网络在股市时间序列预测与作物叶片病害检测中的应用

1. 卷积神经网络在股市时间序列预测中的应用

卷积神经网络(CNN)由一个或多个卷积层组成,其主要应用包括预处理、分类、分割和其他自相关数据处理。在时间序列分析中,CNN 这一流行的图像处理技术的性能得到了提升。

通过分析发现,具有理想平滑因子的 CNN 在时间序列预测方面优于其他选定的时间序列预测技术。在本研究的最优阿尔法值下,能获得最佳的评估结果。由于引入了黄金比例,使用卢卡斯数作为隐藏层显著提高了预测方法的性能。

研究开发了一种基于 CNN 的股票指数时间序列预测方法,并利用该模型提供预测规则。对 BSE SENEX、TAIEX 和 KOSPI 分别展示了相关图表,对比结果也分别列于相应表格中。结果表明,所提出的模型在预测方面表现更优。即使在 2020 年新冠疫情期间,股票指数波动剧烈,其他研究未尝试对该年份进行预测,但本方法的预测结果令人满意。

此外,使用 Relu 激活函数,经过 100 个周期和五层网络设置能得到最佳结果。该预测方法易于使用、直观,且便于描述模型的组成部分。同时,还可以将领域知识输入模型,例如通过特定的变化点或功率约束。不过,在某些情况下,需要对某些参数的默认值进行调整,但操作较为简单。

模型参数 最佳设置
激活函数 Relu
训练周期 100 个周期
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值