谷歌量化白皮书—PTQ原理

本文探讨了量化方法在深度学习中的重要性,涉及量化粒度的选择、激活层的量化策略,如基于BN的范围设置,以及深度可分离卷积与ReLU6的优势。此外,还介绍了标准的参数量化流程(PTQ)和如何诊断模型精度及定位性能瓶颈。
摘要由CSDN通过智能技术生成

本篇笔记摘抄的原文链接

量化方法

量化粒度

量化模拟

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

激活层的量化

量化硬件原理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

量化范围的设置方法

在这里插入图片描述

基于BN的激活层量化范围设置

在这里插入图片描述

普通卷积 VS 深度可分离卷积

在这里插入图片描述

跨层均衡化

在这里插入图片描述

ReLU6比ReLU有什么优势

在这里插入图片描述

吸收高偏差、偏差校正、自适应取整

标准PTQ流程

在这里插入图片描述

量化模型精度的诊断和性能瓶颈定位方法

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值