48、椭圆曲线与阈值秘密图像共享技术解析

椭圆曲线与阈值秘密图像共享技术解析

1. 普通椭圆曲线构造与性质

在椭圆曲线的研究中,我们可以通过特定方法构造具有嵌入度为 1 的复合阶普通椭圆曲线。对于不同的参数 (D)、(u) 和 (v),可以得到不同的素数 (p) 以及对应的椭圆曲线。
- 当 (D = -3),(u = 7),(v = 5) 时,(p = (1 + 7N)^2 + 3(5N)^2) 是素数,椭圆曲线为 (E/F_p : y^2 = x^3 + 3),且 (#E(F_p) = 124N^2)。
- 当 (D = -4),(u = 16),(v = 2) 时,(p = (1 + 16N)^2 + 4(2N)^2) 是素数,椭圆曲线为 (E/F_p : y^2 = x^3 + 4x),且 (#E(F_p) = 272N^2)。
- 以 RSA 挑战数 RSA - 2048 为例,当 (D = -7),(u = 5),(v = 17) 时,(p = (1 + 5N)^2 + 7 · (17N)^2) 是素数,椭圆曲线为 (E/F_p : y^2 = x^3 - 35x + 98),且 (#E(F_p) = 2048N^2)。

通过实验发现,采用的方法能找到比其他方法更小的 (|D|),从而减少希尔伯特类多项式的计算,提高了效率。

2. 基于简化泰特对的对称对
2.1 简化泰特对的非退化性

以往期望曲线上的非退化对称对通常由韦伊对 (e) 和扭曲映射 ([\tau]) 导出。对于由算法 1 生成的嵌入度 (k = 1) 的普通椭圆曲线 (E/F_p),设 (r) 是 (N) 的素因子,(P \in E(F_p)) 且阶为 (r),则 ({

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度鲁棒性。同时集成注意力权重LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码文档逐步实践,重点关注数据预处理、模型结构设计GUI集成部分,尝试在本地环境中运行并调试程序,深入理解TransformerLSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值