椭圆曲线与阈值秘密图像共享技术解析
1. 普通椭圆曲线构造与性质
在椭圆曲线的研究中,我们可以通过特定方法构造具有嵌入度为 1 的复合阶普通椭圆曲线。对于不同的参数 (D)、(u) 和 (v),可以得到不同的素数 (p) 以及对应的椭圆曲线。
- 当 (D = -3),(u = 7),(v = 5) 时,(p = (1 + 7N)^2 + 3(5N)^2) 是素数,椭圆曲线为 (E/F_p : y^2 = x^3 + 3),且 (#E(F_p) = 124N^2)。
- 当 (D = -4),(u = 16),(v = 2) 时,(p = (1 + 16N)^2 + 4(2N)^2) 是素数,椭圆曲线为 (E/F_p : y^2 = x^3 + 4x),且 (#E(F_p) = 272N^2)。
- 以 RSA 挑战数 RSA - 2048 为例,当 (D = -7),(u = 5),(v = 17) 时,(p = (1 + 5N)^2 + 7 · (17N)^2) 是素数,椭圆曲线为 (E/F_p : y^2 = x^3 - 35x + 98),且 (#E(F_p) = 2048N^2)。
通过实验发现,采用的方法能找到比其他方法更小的 (|D|),从而减少希尔伯特类多项式的计算,提高了效率。
2. 基于简化泰特对的对称对
2.1 简化泰特对的非退化性
以往期望曲线上的非退化对称对通常由韦伊对 (e) 和扭曲映射 ([\tau]) 导出。对于由算法 1 生成的嵌入度 (k = 1) 的普通椭圆曲线 (E/F_p),设 (r) 是 (N) 的素因子,(P \in E(F_p)) 且阶为 (r),则 ({