KNN,K近邻多特征分类预测(Matlab)
1.数据多特征分类预测,输入多个特征,分四类,代码内注释详细,直接替换数据就可以使用
2.运行环境Matlab2018b及以上;
3.FITKNNC.m为主文件,data为数据;
注意:数据和文件放在一个文件夹运行。
ID:4338689577757818
机器学习算法设计师
KNN算法是一种常用的分类算法,它通过测量不同特征之间的距离来进行分类预测。在本文中,我们将讨论KNN算法在多特征分类预测中的应用,以及如何使用Matlab编写代码实现该算法。
首先,我们需要明确问题的背景和目标。在我们的案例中,我们需要根据输入的多个特征将数据分为四类。为了实现这个目标,我们需要使用KNN算法来确定数据与已知分类之间的关系,并预测新数据的分类。
在本文中,我们将使用Matlab2018b以上版本作为开发环境,并给出一个主文件FITKNNC.m以及数据文件data。我们需要将这两个文件放在同一个文件夹下进行运行。在主文件中,我们会详细注释每一行代码的功能,以便读者能够理解代码的执行过程。读者只需将自己的数据替换掉示例数据,即可使用该代码。
在开始编写代码之前,我们需要对KNN算法的原理进行简单的介绍。KNN算法是一种基于实例的学习方法,其核心思想是通过测量数据之间的距离来确定它们之间的相似度。在分类预测中,KNN算法主要有以下几个步骤:
-
准备数据集:将数据集分为已知分类和待分类两部分。已知分类的数据集用于训练模型,待分类的数据用于预测分类。
-
计算距离:对待分类的数据,计算它与已知分类数据之间的距离。常用的距离度量方法有欧氏距离、曼哈顿距离等。
-
选择K值:K值是指选择多少个最近邻居作为投票依据,一般通过交叉验证选择合适的K值。
-
进行投票:根据K个最近邻居的分类情况,进行投票决策,得出待分类数据的预测分类。
在我们的代码实现中,我们首先将数据集分为训练集和测试集。训练集是我们用于训练模型的数据,而测试集是用于验证模型准确性的数据。通过计算测试集中每个数据与训练集中数据的距离,我们可以得到测试集中每个数据的K个最近邻居,并通过投票的方式确定其分类。最后,我们将预测结果与实际结果进行比较,评估模型的准确性。
在代码中,我们将使用Matlab提供的相关函数和语法来实现KNN算法。具体来说,我们会使用pdist函数来计算距离,knnclassify函数来进行分类预测,并使用confusionmat函数来评估模型的准确性。
总结起来,本文主要介绍了KNN算法在多特征分类预测中的应用,并给出了相应的Matlab代码实现。读者只需将自己的数据替换示例数据,即可使用该代码进行分类预测。通过学习本文,读者能够了解KNN算法的基本原理和实现方式,并在实际应用中灵活运用。希望本文对读者在程序员社区的博客上发表有所帮助,期待读者在实践中取得良好的效果。
相关的代码,程序地址如下:http://fansik.cn/689577757818.html