王茂霖:数据挖掘提分三板斧!(附PPT下载)



作者:王茂霖,华中科技大学,Datawhale成员
来源:Datawhale

本文多图,建议阅读10+分钟本文作者与你分享数据挖掘的三把利器。

内容概括

数据挖掘提分三板斧:

1. 金斧-数据清洗和特征工程

2. 银斧-模型参数调节

3. 铜斧-模型集成

公众号(DatapiTHU)后台回复“20210420”获取完整PPT下载

视频地址:https://www.bilibili.com/video/BV1MU4y1h75G

Part 1 数据清洗和特征工程

一、关于数据清洗

1.缺失值处理:

2.异常值处理:

3.数据分桶:

4.数据标准化:在不同的问题中,标准化的意义不同

  • 在回归预测中,标准化是为了让特征值有均等的权重;

  • 在训练神经网络的过程中,通过将数据标准化,能够加速权重参数的收敛;

  • 主成分分析中,需要对数据进行标准化处理;默认指标间权重相等,不考虑指标间差异和相互影响。

数据清洗的示例:

二、关于特征工程

1.特征构造:

2.特征选择:

特征工程的示例:

Part 2 模型参数调节

一、关于建模调参

1. 理解模型

2. 性能验证

3. 模型调参

Part 3 模型集成

一、关于模型集成

1. 加权融合

2. Boosting/Bagging

3. Stacking/Blending

模型集成示例:

本文作者

王茂霖,Datawhale重要贡献成员,Datawhale&天池数据挖掘学习赛开源内容发起人,全网阅读超10w。

参赛30余次,获得BCIC-数字中国创新创业大赛亚军,全球城市计算AI挑战赛,Alibaba Cloud German AI Challenge等多项Top10。

访问下方地址或点击"阅读原文"查看分享:

https://tianchi.aliyun.com/specials/promotion/allcompetition

更多学习资源大家可以前往天池学习平台查看,完成从AI小白到AI新手、AI工程师和AI科学家的进阶学习。

学习地址:https://tianchi.aliyun.com/course

编辑:黄继彦

校对:王欣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值