【干货书】知识图谱:基础,技术与应用

本书深入探讨知识图谱的构建、维护和查询技术,涵盖从自然语言处理、数据挖掘到语义Web的多学科方法。书中包含实际应用案例和练习,适合人工智能和数据科学领域的学习者与从业者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

de0b56bec52ed2b81d68b79904f6f039.png

来源:专知
本文为书籍介绍,建议阅读5分钟本文涵盖了构建知识图谱、向知识图谱添加新知识(或在知识图中精炼旧知识)以及访问(或查询)知识图谱的技术。

937f58938a7a881a412bf71199cbcec3.png

一本严谨而全面的教科书,涵盖了知识图谱的主要方法,人工智能中的一个活跃和跨学科领域。

知识图谱领域允许我们从复杂的现实世界数据中建模、处理和得出见解,在过去十年中,它已经成为人工智能的一个活跃的跨学科领域,借鉴了自然语言处理、数据挖掘和语义Web等领域。目前的项目包括预测网络攻击、推荐产品,甚至从数千篇关于COVID-19的论文中收集见解。这本教科书提供了该领域的严格和全面的覆盖。它系统地关注主要的方法,包括那些经受住时间考验的方法和最新的深度学习方法。

在介绍了介绍性和背景材料之后,本文涵盖了构建知识图谱、向知识图谱添加新知识(或在知识图中精炼旧知识)以及访问(或查询)知识图谱的技术。最后,书中描述了特定的知识图谱生态系统,与每个生态系统对应的几个现实世界的应用和案例研究。每一章结尾都有软件和资源部分,以及建议阅读的参考书目。章末练习共130个,代表了不同的抽象层次。

https://mitpress.mit.edu/9780262045094/

1a3d3dcf908b3ea28ddc1c95ac7244aa.jpeg

40acf77a829a004b78a3ea02b3a02a84.jpeg

a7acbec34447cf7d7607aeb4895fdfcd.jpeg

f739ba9ec4f6b3cacea28005d30dd72e.jpeg

9d91ceb109e23d5b2e801c93aaba9753.png

09e2801ced596d13957d3f89d8e0d347.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值